Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 141848 by iloveisrael last updated on 24/May/21

 I = ∫ (1/( (√(1−x^2 ))−1)) dx

$$\:\mathscr{I}\:=\:\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−\mathrm{1}}\:{dx}\: \\ $$

Answered by ArielVyny last updated on 24/May/21

we know that  cos^2 x+sin^2 x=1  let us consider that  x=sint  dx=costdt  j=∫(1/(−1+(√(1−sin^2 t))))costdt  =∫((cost)/(−1+cost))dt  =∫((cost−1+1)/(−1+cost))dt  =∫1dt+∫(1/(cost−1))dt

$${we}\:{know}\:{that}\:\:{cos}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {x}=\mathrm{1} \\ $$$${let}\:{us}\:{consider}\:{that}\:\:{x}={sint} \\ $$$${dx}={costdt} \\ $$$${j}=\int\frac{\mathrm{1}}{−\mathrm{1}+\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {t}}}{costdt} \\ $$$$=\int\frac{{cost}}{−\mathrm{1}+{cost}}{dt} \\ $$$$=\int\frac{{cost}−\mathrm{1}+\mathrm{1}}{−\mathrm{1}+{cost}}{dt} \\ $$$$=\int\mathrm{1}{dt}+\int\frac{\mathrm{1}}{{cost}−\mathrm{1}}{dt} \\ $$

Answered by iloveisrael last updated on 24/May/21

 I = ∫ (((√(1−x^2 ))+1)/(−x^2 )) dx  I=−∫ ((√(1−x^2 ))/x^2 ) dx −∫ x^(−2)  dx  I=(1/x)−∫ ((√(1−x^2 ))/x^2 ) dx   set x = sin q ⇒dx = cos q dq  I=(1/x)−∫ ((cos q)/(sin^2 )) (cos q dq)  I=(1/x)−∫ cot^2 q dq   I=(1/x)−∫ (csc^2 q−1)dq  I=(1/x)+q+cot q + c  I=(1/x)+arcsin x +((√(1−x^2 ))/x) +c  I=((1+(√(1−x^2 )))/x) + arcsin x + c

$$\:\mathcal{I}\:=\:\int\:\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+\mathrm{1}}{−{x}^{\mathrm{2}} }\:{dx} \\ $$$${I}=−\int\:\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} }\:{dx}\:−\int\:{x}^{−\mathrm{2}} \:{dx} \\ $$$${I}=\frac{\mathrm{1}}{{x}}−\int\:\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} }\:{dx}\: \\ $$$${set}\:{x}\:=\:\mathrm{sin}\:{q}\:\Rightarrow{dx}\:=\:\mathrm{cos}\:{q}\:{dq} \\ $$$${I}=\frac{\mathrm{1}}{{x}}−\int\:\frac{\mathrm{cos}\:{q}}{\mathrm{sin}\:^{\mathrm{2}} }\:\left(\mathrm{cos}\:{q}\:{dq}\right) \\ $$$${I}=\frac{\mathrm{1}}{{x}}−\int\:\mathrm{cot}\:^{\mathrm{2}} {q}\:{dq}\: \\ $$$${I}=\frac{\mathrm{1}}{{x}}−\int\:\left(\mathrm{csc}\:^{\mathrm{2}} {q}−\mathrm{1}\right){dq} \\ $$$${I}=\frac{\mathrm{1}}{{x}}+{q}+\mathrm{cot}\:{q}\:+\:{c} \\ $$$${I}=\frac{\mathrm{1}}{{x}}+\mathrm{arcsin}\:{x}\:+\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}\:+{c} \\ $$$${I}=\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}\:+\:\mathrm{arcsin}\:{x}\:+\:{c}\: \\ $$

Answered by MJS_new last updated on 24/May/21

∫(dx/( (√(1−x^2 ))−1))=−∫((1+(√(1−x^2 )))/x^2 )dx=       [t=((1+(√(1−x^2 )))/x) → dx=−((x^2 (√(1−x^2 )))/(1+(√(1−x^2 ))))dt]  =∫((t^2 −1)/(t^2 +1))dt=∫(1−(2/(t^2 +1)))dt=t−2arctan t =  =((1+(√(1−x^2 )))/x)−2arctan ((1+(√(1−x^2 )))/x) +C

$$\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−\mathrm{1}}=−\int\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}\:\rightarrow\:{dx}=−\frac{{x}^{\mathrm{2}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dt}\right] \\ $$$$=\int\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}=\int\left(\mathrm{1}−\frac{\mathrm{2}}{{t}^{\mathrm{2}} +\mathrm{1}}\right){dt}={t}−\mathrm{2arctan}\:{t}\:= \\ $$$$=\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}−\mathrm{2arctan}\:\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}\:+{C} \\ $$

Answered by mathmax by abdo last updated on 24/May/21

J=∫ (dx/( (√(1−x^2 ))−1))  ⇒J=_(x=sint)   ∫   ((cost dt)/(cost−1))  =∫ ((cost−1+1)/(cost−1))dt =t +∫  (dt/(cost−1))  but  ∫ (dt/(cost−1)) =_(tan((t/2))=y)   ∫  ((2dy)/((1+y^2 )(((1−y^2 )/(1+y^2 ))−1)))=∫ ((2dy)/(1−y^2 −1−y^2 ))  =∫ ((2dy)/(−2y^2 ))=∫ ((−dy)/y^2 )=(1/y) +C ⇒  J=arcsinx +tan((1/2) arcsinx) +C

$$\mathrm{J}=\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }−\mathrm{1}}\:\:\Rightarrow\mathrm{J}=_{\mathrm{x}=\mathrm{sint}} \:\:\int\:\:\:\frac{\mathrm{cost}\:\mathrm{dt}}{\mathrm{cost}−\mathrm{1}} \\ $$$$=\int\:\frac{\mathrm{cost}−\mathrm{1}+\mathrm{1}}{\mathrm{cost}−\mathrm{1}}\mathrm{dt}\:=\mathrm{t}\:+\int\:\:\frac{\mathrm{dt}}{\mathrm{cost}−\mathrm{1}}\:\:\mathrm{but} \\ $$$$\int\:\frac{\mathrm{dt}}{\mathrm{cost}−\mathrm{1}}\:=_{\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)=\mathrm{y}} \:\:\int\:\:\frac{\mathrm{2dy}}{\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)\left(\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }−\mathrm{1}\right)}=\int\:\frac{\mathrm{2dy}}{\mathrm{1}−\mathrm{y}^{\mathrm{2}} −\mathrm{1}−\mathrm{y}^{\mathrm{2}} } \\ $$$$=\int\:\frac{\mathrm{2dy}}{−\mathrm{2y}^{\mathrm{2}} }=\int\:\frac{−\mathrm{dy}}{\mathrm{y}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{y}}\:+\mathrm{C}\:\Rightarrow \\ $$$$\mathrm{J}=\mathrm{arcsinx}\:+\mathrm{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{arcsinx}\right)\:+\mathrm{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com