Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 142880 by Dwaipayan Shikari last updated on 06/Jun/21

 Prove that 𝛗(n)=nΠ_k (1−(1/p_k ))  φ(n):Euler totient function

$$\:{Prove}\:{that}\:\boldsymbol{\phi}\left({n}\right)={n}\underset{{k}} {\prod}\left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{{k}} }\right)\:\:\phi\left({n}\right):{Euler}\:{totient}\:{function} \\ $$

Answered by Snail last updated on 06/Jun/21

I am considering that u know φ(n) is multiplicative  function i.e φ(ab)=φ(a)φ(b)..where a and b   are coprime  Let p_1 .............p_k  are distinct primd factors of  n  n=p_1 ^k_1  .........p_k ^k_r        [here r=k as k=number of terms]  φ(n)=φ(p_1 ^k_1  .....p_k ^k_r  )=φ(p_1 ^k_1  )......φ(p_k ^k_r  )....(1)  Now the number of integers which are not  coprime to p^(k ) ...(p.1),(p.2),(p.3),........(p.p^(k−1) )  φ(p^k )=numbdr of integers coprimd to p^k and<p^k               = p^k −p^(k−1) =p^k (1−(1/p))  Now using this in( 1)  =p_1 ^k_1  (1−(1/p_1 ))p_2 ^k_2  (1−(1/p_2 ))...p_k ^k_r  (1−(1/p_r ))    =p_1 ^k_1  p_2 ^k_2  .....p_r ^k_r  (1−(1/p_1 )).....(1−(1/p_r ))  =n(1−(1/p_1 ))(1−(1/p_2 ))....(1−(1/p_k ))  Proved....

$${I}\:{am}\:{considering}\:{that}\:{u}\:{know}\:\phi\left({n}\right)\:{is}\:{multiplicative} \\ $$$${function}\:{i}.{e}\:\phi\left({ab}\right)=\phi\left({a}\right)\phi\left({b}\right)..{where}\:{a}\:{and}\:{b}\: \\ $$$${are}\:{coprime} \\ $$$${Let}\:{p}_{\mathrm{1}} .............{p}_{{k}} \:{are}\:{distinct}\:{primd}\:{factors}\:{of}\:\:{n} \\ $$$${n}={p}_{\mathrm{1}} ^{{k}_{\mathrm{1}} } .........{p}_{{k}} ^{{k}_{{r}} } \:\:\:\:\:\:\left[{here}\:{r}={k}\:{as}\:{k}={number}\:{of}\:{terms}\right] \\ $$$$\phi\left({n}\right)=\phi\left({p}_{\mathrm{1}} ^{{k}_{\mathrm{1}} } .....{p}_{{k}} ^{{k}_{{r}} } \right)=\phi\left({p}_{\mathrm{1}} ^{{k}_{\mathrm{1}} } \right)......\phi\left({p}_{{k}} ^{{k}_{{r}} } \right)....\left(\mathrm{1}\right) \\ $$$${Now}\:{the}\:{number}\:{of}\:{integers}\:{which}\:{are}\:{not} \\ $$$${coprime}\:{to}\:{p}^{{k}\:} ...\left({p}.\mathrm{1}\right),\left({p}.\mathrm{2}\right),\left({p}.\mathrm{3}\right),........\left({p}.{p}^{{k}−\mathrm{1}} \right) \\ $$$$\phi\left({p}^{{k}} \right)={numbdr}\:{of}\:{integers}\:{coprimd}\:{to}\:{p}^{{k}} {and}<{p}^{{k}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:{p}^{{k}} −{p}^{{k}−\mathrm{1}} ={p}^{{k}} \left(\mathrm{1}−\frac{\mathrm{1}}{{p}}\right) \\ $$$${Now}\:{using}\:{this}\:{in}\left(\:\mathrm{1}\right) \\ $$$$={p}_{\mathrm{1}} ^{{k}_{\mathrm{1}} } \left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{\mathrm{1}} }\right){p}_{\mathrm{2}} ^{{k}_{\mathrm{2}} } \left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{\mathrm{2}} }\right)...{p}_{{k}} ^{{k}_{{r}} } \left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{{r}} }\right) \\ $$$$ \\ $$$$={p}_{\mathrm{1}} ^{{k}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{k}_{\mathrm{2}} } .....{p}_{{r}} ^{{k}_{{r}} } \left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{\mathrm{1}} }\right).....\left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{{r}} }\right) \\ $$$$={n}\left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{\mathrm{1}} }\right)\left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{\mathrm{2}} }\right)....\left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{{k}} }\right) \\ $$$${Proved}.... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 07/Jun/21

Thanks

$${Thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com