Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143051 by mnjuly1970 last updated on 09/Jun/21

       _(∗∗∗∗∗) ::  Lobachevsky Integral ::_(∗∗∗∗∗)            𝛗:=∫_0 ^( ∞) ((sin^2 ( tan(x)))/x^( 2) )dx=^? (π/2)      ..........

$$\:\:\:\:\:\:\:_{\ast\ast\ast\ast\ast} ::\:\:{Lobachevsky}\:{Integral}\:::_{\ast\ast\ast\ast\ast} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{s}{in}^{\mathrm{2}} \left(\:{tan}\left({x}\right)\right)}{{x}^{\:\mathrm{2}} }{dx}\overset{?} {=}\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:.......... \\ $$

Answered by Olaf_Thorendsen last updated on 09/Jun/21

Let f(x) = ((sin^2 (tanx))/(sin^2 x))  φ = ∫_0 ^∞ ((sin^2 (tanx))/x^2 ) dx  φ = ∫_0 ^∞ ((sin^2 (x))/x^2 )f(x) dx  ∀ x≥0 f is a continuous function  satisfying the π−periodic assumption  f(x+π) = f(x), and f(x−π) = f(x).    We can apply the Lobatchevsky′s  Dirichlet integral formula :  ∫_0 ^∞ ((sin^2 x)/x^2 )f(x)dx = ∫_0 ^∞ ((sinx)/x)f(x)dx = ∫_0 ^(π/2) f(x)dx  φ = ∫_0 ^(π/2) ((sin^2 (tanx))/(sin^2 x))dx  Let u = tanx  φ = ∫_0 ^∞ ((sin^2 u)/(sin^2 (arctanu))).(du/(1+u^2 ))  φ = ∫_0 ^∞ ((sin^2 u)/(1−cos^2 (arctanu))).(du/(1+u^2 ))  φ = ∫_0 ^∞ ((sin^2 u)/(1−(1/(1+tan^2 (arctanu))))).(du/(1+u^2 ))  φ = ∫_0 ^∞ ((sin^2 u)/(1−(1/(1+u^2 )))).(du/(1+u^2 ))  φ = ∫_0 ^∞ ((sin^2 u)/u^2 ) du  Let g(u) = 1 (constant function unity)  φ = ∫_0 ^∞ ((sin^2 u)/u^2 )g(u)du = ∫_0 ^∞ ((sinu)/u)g(u)du = ∫_0 ^(π/2) g(u)du  φ = ∫_0 ^(π/2) 1.du = (π/2)

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{tan}{x}\right)}{\mathrm{sin}^{\mathrm{2}} {x}} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{tan}{x}\right)}{{x}^{\mathrm{2}} }\:{dx} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{f}\left({x}\right)\:{dx} \\ $$$$\forall\:{x}\geqslant\mathrm{0}\:{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\pi−\mathrm{periodic}\:\mathrm{assumption} \\ $$$${f}\left({x}+\pi\right)\:=\:{f}\left({x}\right),\:\mathrm{and}\:{f}\left({x}−\pi\right)\:=\:{f}\left({x}\right). \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{apply}\:\mathrm{the}\:\mathrm{Lobatchevsky}'\mathrm{s} \\ $$$$\mathrm{Dirichlet}\:\mathrm{integral}\:\mathrm{formula}\:: \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{f}\left({x}\right){dx}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{x}}{{x}}{f}\left({x}\right){dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left({x}\right){dx} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{tan}{x}\right)}{\mathrm{sin}^{\mathrm{2}} {x}}{dx} \\ $$$$\mathrm{Let}\:{u}\:=\:\mathrm{tan}{x} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{arctan}{u}\right)}.\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \left(\mathrm{arctan}{u}\right)}.\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left(\mathrm{arctan}{u}\right)}}.\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }}.\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{{u}^{\mathrm{2}} }\:{du} \\ $$$$\mathrm{Let}\:{g}\left({u}\right)\:=\:\mathrm{1}\:\left(\mathrm{constant}\:\mathrm{function}\:\mathrm{unity}\right) \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{{u}^{\mathrm{2}} }{g}\left({u}\right){du}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{u}}{{u}}{g}\left({u}\right){du}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {g}\left({u}\right){du} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{1}.{du}\:=\:\frac{\pi}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 09/Jun/21

  thanks alot mr olaf....

$$\:\:{thanks}\:{alot}\:{mr}\:{olaf}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com