Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143312 by Ar Brandon last updated on 12/Jun/21

∫_0 ^∞ ((sin^4 x)/x^4 )dx=(π/3)

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{4}} \mathrm{x}}{\mathrm{x}^{\mathrm{4}} }\mathrm{dx}=\frac{\pi}{\mathrm{3}} \\ $$

Answered by Olaf_Thorendsen last updated on 12/Jun/21

Let f(x) = 1 (constant function unity)  As f is a continuous function satisfying  the π−periodic assumption, we can  apply the extended Lobachevsky′s   Dirichlet integral formula :  ∫_0 ^∞ ((sin^4 )/x^4 )f(x) dx = ∫_0 ^(π/2) f(x) dx−(2/3)∫_0 ^(π/2) sin^2 x.f(x)dx  ⇒ ∫_0 ^∞ ((sin^4 )/x^4 ) dx = ∫_0 ^(π/2) dx−(2/3)∫_0 ^(π/2) sin^2 x dx  ∫_0 ^∞ ((sin^4 )/x^4 ) dx = (π/2)−(2/3)∫_0 ^(π/2) ((1−cos2x)/2) dx  ∫_0 ^∞ ((sin^4 )/x^4 ) dx = (π/2)−(1/3)[x−(1/2)sin2x]_0 ^(π/2)   ∫_0 ^∞ ((sin^4 )/x^4 ) dx = (π/2)−(1/3)((π/2))  ∫_0 ^∞ ((sin^4 )/x^4 ) dx = (π/2)−(π/6) = (π/3)

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\mathrm{1}\:\left(\mathrm{constant}\:\mathrm{function}\:\mathrm{unity}\right) \\ $$$$\mathrm{As}\:{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{satisfying} \\ $$$$\mathrm{the}\:\pi−\mathrm{periodic}\:\mathrm{assumption},\:\mathrm{we}\:\mathrm{can} \\ $$$$\mathrm{apply}\:\mathrm{the}\:\mathrm{extended}\:\mathrm{Lobachevsky}'\mathrm{s} \\ $$$$\:\mathrm{Dirichlet}\:\mathrm{integral}\:\mathrm{formula}\:: \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{4}} }{{x}^{\mathrm{4}} }{f}\left({x}\right)\:{dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left({x}\right)\:{dx}−\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {x}.{f}\left({x}\right){dx} \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{4}} }{{x}^{\mathrm{4}} }\:{dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {dx}−\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {x}\:{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{4}} }{{x}^{\mathrm{4}} }\:{dx}\:=\:\frac{\pi}{\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}−\mathrm{cos2}{x}}{\mathrm{2}}\:{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{4}} }{{x}^{\mathrm{4}} }\:{dx}\:=\:\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\left[{x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin2}{x}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{4}} }{{x}^{\mathrm{4}} }\:{dx}\:=\:\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{4}} }{{x}^{\mathrm{4}} }\:{dx}\:=\:\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{6}}\:=\:\frac{\pi}{\mathrm{3}} \\ $$

Commented by Ar Brandon last updated on 12/Jun/21

Thanks Sir

$$\mathrm{Thanks}\:\mathrm{Sir} \\ $$

Commented by Ar Brandon last updated on 12/Jun/21

I tried this;  Φ=∫_0 ^∞ ((sin^4 x)/x^4 )dx,   sin^4 x=(((1−2cos2x+cos^2 2x))/4)=(1/4)−((cos2x)/2)+(((1+cos4x))/8)  Φ=(3/8)∫_0 ^∞ (1/x^4 )dx−(1/2)∫_0 ^∞ ((cos2x)/x^4 )dx+(1/8)∫_0 ^∞ ((cos4x)/x^4 )dx      =−[(1/(8x^3 ))]_0 ^∞ −((π2^3 )/(4Γ(4)cos((π/2)×4)))+((π4^3 )/(16Γ(4)cos((π/2)×4)))       =−[(1/(8x^3 ))]_0 ^∞ −((8π)/(24))+((64π)/(48))=...  Why did it not go ? Do you know why ?

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{this}; \\ $$$$\Phi=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{4}} \mathrm{x}}{\mathrm{x}^{\mathrm{4}} }\mathrm{dx},\: \\ $$$$\mathrm{sin}^{\mathrm{4}} \mathrm{x}=\frac{\left(\mathrm{1}−\mathrm{2cos2x}+\mathrm{cos}^{\mathrm{2}} \mathrm{2x}\right)}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{cos2x}}{\mathrm{2}}+\frac{\left(\mathrm{1}+\mathrm{cos4x}\right)}{\mathrm{8}} \\ $$$$\Phi=\frac{\mathrm{3}}{\mathrm{8}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\mathrm{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{cos2x}}{\mathrm{x}^{\mathrm{4}} }\mathrm{dx}+\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{cos4x}}{\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$$$\:\:\:\:=−\left[\frac{\mathrm{1}}{\mathrm{8x}^{\mathrm{3}} }\right]_{\mathrm{0}} ^{\infty} −\frac{\pi\mathrm{2}^{\mathrm{3}} }{\mathrm{4}\Gamma\left(\mathrm{4}\right)\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}×\mathrm{4}\right)}+\frac{\pi\mathrm{4}^{\mathrm{3}} }{\mathrm{16}\Gamma\left(\mathrm{4}\right)\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}×\mathrm{4}\right)} \\ $$$$\:\:\:\:\:=−\left[\frac{\mathrm{1}}{\mathrm{8x}^{\mathrm{3}} }\right]_{\mathrm{0}} ^{\infty} −\frac{\mathrm{8}\pi}{\mathrm{24}}+\frac{\mathrm{64}\pi}{\mathrm{48}}=... \\ $$$$\mathrm{Why}\:\mathrm{did}\:\mathrm{it}\:\mathrm{not}\:\mathrm{go}\:?\:\mathrm{Do}\:\mathrm{you}\:\mathrm{know}\:\mathrm{why}\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com