Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143603 by mnjuly1970 last updated on 16/Jun/21

             .....Calculus.....          Ω:=Σ_(n=1) ^∞ (1/(n^k (1+n)))   (k≥ 2) ......

$$\:\:\:\:\:\:\:\:\:\:\:\:\:.....{Calculus}..... \\ $$$$\:\:\:\:\:\:\:\:\Omega:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{k}} \left(\mathrm{1}+{n}\right)}\:\:\:\left({k}\geqslant\:\mathrm{2}\right)\:...... \\ $$

Answered by Dwaipayan Shikari last updated on 16/Jun/21

Ω:=Σ_(n=1) ^∞ (1/(n^k (n+1)))=∫_0 ^1 Li_k (x)dx  =[xLi_k (x)]_0 ^1 −∫_0 ^1 Σ_(n=1) ^∞ n ((x^(n−1) .x)/n^k )dx  =Li_k (1)−∫_0 ^1 Σ_(n=1) ^∞ (x^n /n^(k−1) )dx=Li_k (1)−∫_0 ^1 Li_(k−1) (1)dx  =Li_k (1)−Li_(k−1) (1)+Li_(k−2) (1)−...Li_2 (1)  =ζ(k)−ζ(k−1)+ζ(k−2)−ζ(k−3)+...+(π^2 /6)  if k odd  or ζ(k)−ζ(k−1)+...−(π^2 /6)  if k even

$$\Omega:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{k}} \left({n}+\mathrm{1}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} {Li}_{{k}} \left({x}\right){dx} \\ $$$$=\left[{xLi}_{{k}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}\:\frac{{x}^{{n}−\mathrm{1}} .{x}}{{n}^{{k}} }{dx} \\ $$$$={Li}_{{k}} \left(\mathrm{1}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}^{{k}−\mathrm{1}} }{dx}={Li}_{{k}} \left(\mathrm{1}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} {Li}_{{k}−\mathrm{1}} \left(\mathrm{1}\right){dx} \\ $$$$={Li}_{{k}} \left(\mathrm{1}\right)−{Li}_{{k}−\mathrm{1}} \left(\mathrm{1}\right)+{Li}_{{k}−\mathrm{2}} \left(\mathrm{1}\right)−...{Li}_{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$$=\zeta\left({k}\right)−\zeta\left({k}−\mathrm{1}\right)+\zeta\left({k}−\mathrm{2}\right)−\zeta\left({k}−\mathrm{3}\right)+...+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:{if}\:{k}\:{odd} \\ $$$${or}\:\zeta\left({k}\right)−\zeta\left({k}−\mathrm{1}\right)+...−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:{if}\:{k}\:{even} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 16/Jun/21

     thank you so much...

$$\:\:\:\:\:{thank}\:{you}\:{so}\:{much}... \\ $$

Answered by mindispower last updated on 16/Jun/21

f(k)=Σ_(n≥1) (1/(n^k (n+1))),f(1)=1  f(k)+f(k−1)=Σ(1/n^k )=ζ(k),k≥1  (−1)^m f(m)+(−1)^m f(m−1)=(−1)^m ζ(m)  Σ_(m=2) ^k (−1)^m f(m)+(−1)^m f(m−1)=Σ_(m=2) ^k (−1)^m ζ(m)  (−1)^k f(k)+f(1)=Σ_(m=2) ^k (−1)^m ζ(m)  f(k)=(−1)^k Σ_(m=2) ^k (−1)^m ζ(m)+(−1)^(k−1) ,k≥2  f(1)=1

$${f}\left({k}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}^{{k}} \left({n}+\mathrm{1}\right)},{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${f}\left({k}\right)+{f}\left({k}−\mathrm{1}\right)=\Sigma\frac{\mathrm{1}}{{n}^{{k}} }=\zeta\left({k}\right),{k}\geqslant\mathrm{1} \\ $$$$\left(−\mathrm{1}\right)^{{m}} {f}\left({m}\right)+\left(−\mathrm{1}\right)^{{m}} {f}\left({m}−\mathrm{1}\right)=\left(−\mathrm{1}\right)^{{m}} \zeta\left({m}\right) \\ $$$$\underset{{m}=\mathrm{2}} {\overset{{k}} {\sum}}\left(−\mathrm{1}\right)^{{m}} {f}\left({m}\right)+\left(−\mathrm{1}\right)^{{m}} {f}\left({m}−\mathrm{1}\right)=\underset{{m}=\mathrm{2}} {\overset{{k}} {\sum}}\left(−\mathrm{1}\right)^{{m}} \zeta\left({m}\right) \\ $$$$\left(−\mathrm{1}\right)^{{k}} {f}\left({k}\right)+{f}\left(\mathrm{1}\right)=\underset{{m}=\mathrm{2}} {\overset{{k}} {\sum}}\left(−\mathrm{1}\right)^{{m}} \zeta\left({m}\right) \\ $$$${f}\left({k}\right)=\left(−\mathrm{1}\right)^{{k}} \underset{{m}=\mathrm{2}} {\overset{{k}} {\sum}}\left(−\mathrm{1}\right)^{{m}} \zeta\left({m}\right)+\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} ,{k}\geqslant\mathrm{2} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 16/Jun/21

 very nice ....

$$\:{very}\:{nice}\:.... \\ $$

Commented by mindispower last updated on 16/Jun/21

pleasur

$${pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com