Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 143995 by liberty last updated on 20/Jun/21

  lim_(x→π/4) ((π−4x)/( (√(1−(√(sin 2x)))))) =?

$$\:\:\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\pi−\mathrm{4}{x}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}}\:=? \\ $$

Answered by mathmax by abdo last updated on 20/Jun/21

f(x)=((π−4x)/( (√(1−(√(sin2x)))))) ⇒f(x)=_((π/4)−x=t)    ((π−4((π/4)−t))/( (√(1−(√(sin(2((π/4)−t)))))))  =((4t)/( (√(1−(√(sin((π/2)−2t)))))))=((4t)/( (√(1−(√(cos(2t)))))))=g(t)   (t→0)  cos(2t)∼1−((4t^2 )/2)=1−2t^2  ⇒(√(cos(2t)))∼(√(1−2t^2 ))∼1−(1/2)(2t^2 )=1−t^2   −(√(cos(2t)))∼t^2 −1 ⇒1−(√(cos(2t)))∼t^2  ⇒(√(1−(√(cos(2t)))))∼t ⇒  g(t)∼((4t)/t) ⇒lim_(t→0) g(t)=4

$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\pi−\mathrm{4x}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin2x}}}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=_{\frac{\pi}{\mathrm{4}}−\mathrm{x}=\mathrm{t}} \:\:\:\frac{\pi−\mathrm{4}\left(\frac{\pi}{\mathrm{4}}−\mathrm{t}\right)}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin}\left(\mathrm{2}\left(\frac{\pi}{\mathrm{4}}−\mathrm{t}\right)\right.}}} \\ $$$$=\frac{\mathrm{4t}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}−\mathrm{2t}\right)}}}=\frac{\mathrm{4t}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{cos}\left(\mathrm{2t}\right)}}}=\mathrm{g}\left(\mathrm{t}\right)\:\:\:\left(\mathrm{t}\rightarrow\mathrm{0}\right) \\ $$$$\mathrm{cos}\left(\mathrm{2t}\right)\sim\mathrm{1}−\frac{\mathrm{4t}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{1}−\mathrm{2t}^{\mathrm{2}} \:\Rightarrow\sqrt{\mathrm{cos}\left(\mathrm{2t}\right)}\sim\sqrt{\mathrm{1}−\mathrm{2t}^{\mathrm{2}} }\sim\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2t}^{\mathrm{2}} \right)=\mathrm{1}−\mathrm{t}^{\mathrm{2}} \\ $$$$−\sqrt{\mathrm{cos}\left(\mathrm{2t}\right)}\sim\mathrm{t}^{\mathrm{2}} −\mathrm{1}\:\Rightarrow\mathrm{1}−\sqrt{\mathrm{cos}\left(\mathrm{2t}\right)}\sim\mathrm{t}^{\mathrm{2}} \:\Rightarrow\sqrt{\mathrm{1}−\sqrt{\mathrm{cos}\left(\mathrm{2t}\right)}}\sim\mathrm{t}\:\Rightarrow \\ $$$$\mathrm{g}\left(\mathrm{t}\right)\sim\frac{\mathrm{4t}}{\mathrm{t}}\:\Rightarrow\mathrm{lim}_{\mathrm{t}\rightarrow\mathrm{0}} \mathrm{g}\left(\mathrm{t}\right)=\mathrm{4} \\ $$

Commented by liberty last updated on 21/Jun/21

in my book the limit doesnot exist

$$\mathrm{in}\:\mathrm{my}\:\mathrm{book}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{doesnot}\:\mathrm{exist} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com