Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 145197 by Gbenga last updated on 03/Jul/21

d/dx of x!=?

$${d}/{dx}\:{of}\:{x}!=? \\ $$

Commented by Dwaipayan Shikari last updated on 03/Jul/21

x!=Γ(x+1)  ((dx!)/dx)=Γ′(x+1)=Γ(x+1)ψ(x+1)      As ((Γ′(x+1))/(Γ(x+1)))=ψ(x+1)

$${x}!=\Gamma\left({x}+\mathrm{1}\right) \\ $$$$\frac{{dx}!}{{dx}}=\Gamma'\left({x}+\mathrm{1}\right)=\Gamma\left({x}+\mathrm{1}\right)\psi\left({x}+\mathrm{1}\right)\:\:\:\:\:\:{As}\:\frac{\Gamma'\left({x}+\mathrm{1}\right)}{\Gamma\left({x}+\mathrm{1}\right)}=\psi\left({x}+\mathrm{1}\right) \\ $$

Answered by puissant last updated on 03/Jul/21

Γ(x)=(x−1)!=∫_0 ^(+∞) t^(x−1) e^(−t) dt  (1/(Γ(x)))= xe^(γx) Π_(k=1) ^∞ (1+(x/k))e^(−(x/k))   ln((1/(Γ(x))))=−ln(Γ(x))                     =ln(x)+γx+Σ_(k=1) ^∞ (1+(x/k))−(x/k)  (d/dx)(ln((1/(Γ(x)))))=−(ln(Γ(x)))′ =− ((Γ′(x))/(Γ(x)))  =(1/x)+γ+Σ_(k=1) ^∞ (1/(1+(x/k)))×(1/k)−(1/k)  =−(1/x)−γ+Σ_(k=1) ^∞ (1/k)−(1/(x+k))  λ(x)=−γ+Σ_(k=1) ^∞ (1/k)−(1/(k−1+x))  ⇒λ(x+1)=−γ+Σ_(k=1) ^∞ (1/k)−(1/(k+x))  ⇒(d/dx)(x!)=((Γ′(x+1))/(Γ(x+1)))....

$$\Gamma\left(\mathrm{x}\right)=\left(\mathrm{x}−\mathrm{1}\right)!=\int_{\mathrm{0}} ^{+\infty} \mathrm{t}^{\mathrm{x}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\frac{\mathrm{1}}{\Gamma\left(\mathrm{x}\right)}=\:\mathrm{xe}^{\gamma\mathrm{x}} \underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{k}}\right)\mathrm{e}^{−\frac{\mathrm{x}}{\mathrm{k}}} \\ $$$$\mathrm{ln}\left(\frac{\mathrm{1}}{\Gamma\left(\mathrm{x}\right)}\right)=−\mathrm{ln}\left(\Gamma\left(\mathrm{x}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{ln}\left(\mathrm{x}\right)+\gamma\mathrm{x}+\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{k}}\right)−\frac{\mathrm{x}}{\mathrm{k}} \\ $$$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{ln}\left(\frac{\mathrm{1}}{\Gamma\left(\mathrm{x}\right)}\right)\right)=−\left(\mathrm{ln}\left(\Gamma\left(\mathrm{x}\right)\right)\right)'\:=−\:\frac{\Gamma'\left(\mathrm{x}\right)}{\Gamma\left(\mathrm{x}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{x}}+\gamma+\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{x}}{\mathrm{k}}}×\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{k}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{x}}−\gamma+\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{x}+\mathrm{k}} \\ $$$$\lambda\left(\mathrm{x}\right)=−\gamma+\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{k}−\mathrm{1}+\mathrm{x}} \\ $$$$\Rightarrow\lambda\left(\mathrm{x}+\mathrm{1}\right)=−\gamma+\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{x}} \\ $$$$\Rightarrow\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}!\right)=\frac{\Gamma'\left(\mathrm{x}+\mathrm{1}\right)}{\Gamma\left(\mathrm{x}+\mathrm{1}\right)}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com