Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 145636 by mathmax by abdo last updated on 06/Jul/21

calculate ∫_0 ^∞  ((arctanx)/((1+x^2 )^2 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Answered by Dwaipayan Shikari last updated on 06/Jul/21

∫_0 ^∞ ((tan^(−1) (x))/((1+x^2 )^2 ))dx       x=tanθ  =∫_0 ^(π/2) (θ/(sec^4 θ))sec^2 θdθ  =∫_0 ^(π/2) θcos^2 θ dθ=(1/2)∫_0 ^(π/2) θ+θcos2θdθ  =(π^2 /(16))−(1/4)∫_0 ^(π/2) sin2θdθ=(π^2 /(16))−(1/4)

$$\int_{\mathrm{0}} ^{\infty} \frac{{tan}^{−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:\:\:\:\:\:{x}={tan}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\theta}{{sec}^{\mathrm{4}} \theta}{sec}^{\mathrm{2}} \theta{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \theta{cos}^{\mathrm{2}} \theta\:{d}\theta=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \theta+\theta{cos}\mathrm{2}\theta{d}\theta \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}\mathrm{2}\theta{d}\theta=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Answered by mathmax by abdo last updated on 07/Jul/21

Ψ=∫_0 ^∞  ((arctanx)/((1+x^2 )^2 ))dx  cha7gement x=tant give  Ψ=∫_0 ^(π/2) (t/((1+tan^2 t)^2 ))(1+tan^2 t)dt =∫_0 ^(π/2) (t/(1+tan^2 t))dt  =∫_0 ^(π/2) tcos^2 t dt =∫_0 ^(π/2) t(((1+cos(2t))/2))dt=(1/2)∫_0 ^(π/2)  tdt +(1/2)∫_0 ^(π/2) tcos(2t)dt  ∫_0 ^(π/2)  tdt =[(t^2 /2)]_0 ^(π/2)  =(π^2 /8)  ∫_0 ^(π/2)  tcos(2t)dt =[(t/2)sin(2t)]_0 ^(π/2) −∫_0 ^(π/2) ((sin(2t))/2)dt  =[(1/4)cos(2t)]_0 ^(π/2)  =(1/4)(−2)=−(1/2) ⇒  Ψ=(π^2 /(16))−(1/4)

$$\Psi=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{cha7gement}\:\mathrm{x}=\mathrm{tant}\:\mathrm{give} \\ $$$$\Psi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{t}}{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}\right)^{\mathrm{2}} }\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}\right)\mathrm{dt}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{t}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}}\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tcos}^{\mathrm{2}} \mathrm{t}\:\mathrm{dt}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{t}\left(\frac{\mathrm{1}+\mathrm{cos}\left(\mathrm{2t}\right)}{\mathrm{2}}\right)\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{tdt}\:+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tcos}\left(\mathrm{2t}\right)\mathrm{dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{tdt}\:=\left[\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{tcos}\left(\mathrm{2t}\right)\mathrm{dt}\:=\left[\frac{\mathrm{t}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2t}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\left(\mathrm{2t}\right)}{\mathrm{2}}\mathrm{dt} \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\left(\mathrm{2t}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\mathrm{1}}{\mathrm{4}}\left(−\mathrm{2}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\Psi=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com