Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 145960 by puissant last updated on 10/Jul/21

Answered by mathmax by abdo last updated on 10/Jul/21

R_n =Σ_(p=n+1) ^(2n) sin((1/p)) ⇒R_n =_(p−n=k)   Σ_(k=1) ^n  sin((1/(n+k)))  we have  sinx=x−(x^3 /6)+... ⇒x−(x^3 /6)≤sinx≤x ⇒  (1/(n+k))−(1/(6(n+k)^3 ))≤sin((1/(n+k)))≤(1/(n+k)) ⇒  Σ_(k=1) ^n  (1/(n+k))−(1/6)Σ_(k=1) ^n  (1/((n+k)^3 ))≤Σ_(k=1) ^n  sin((1/(n+k)))≤Σ_(k=1) ^n  (1/(n+k))  Σ_(k=1) ^n  (1/(n+k))=(1/n)Σ_(k=1) ^n  (1/(1+(k/n)))→∫_0 ^1  (dx/(1+x))=log2  Σ_(k=1) ^n  (1/((n+k)^3 ))   we k≥1 ⇒n+k≥n+1 ⇒(1/((n+k)^3 ))≤(1/((n+1)^3 ))  ⇒Σ_(k=1) ^n (1/((n+k)^3 ))≤(n/((n+1)^3 ))→0 (n→∞) ⇒lim_(n→+∞) R_n =log2

$$\mathrm{R}_{\mathrm{n}} =\sum_{\mathrm{p}=\mathrm{n}+\mathrm{1}} ^{\mathrm{2n}} \mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{p}}\right)\:\Rightarrow\mathrm{R}_{\mathrm{n}} =_{\mathrm{p}−\mathrm{n}=\mathrm{k}} \:\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\:\mathrm{sinx}=\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}+...\:\Rightarrow\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant\mathrm{sinx}\leqslant\mathrm{x}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\leqslant\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\right)\leqslant\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\:\Rightarrow \\ $$$$\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\leqslant\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\right)\leqslant\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}} \\ $$$$\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}=\frac{\mathrm{1}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}}\rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}}=\mathrm{log2} \\ $$$$\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\:\:\:\mathrm{we}\:\mathrm{k}\geqslant\mathrm{1}\:\Rightarrow\mathrm{n}+\mathrm{k}\geqslant\mathrm{n}+\mathrm{1}\:\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\leqslant\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\Rightarrow\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\leqslant\frac{\mathrm{n}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} }\rightarrow\mathrm{0}\:\left(\mathrm{n}\rightarrow\infty\right)\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{R}_{\mathrm{n}} =\mathrm{log2} \\ $$

Commented by mathmax by abdo last updated on 10/Jul/21

you are welcome sir.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir}. \\ $$

Commented by puissant last updated on 10/Jul/21

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by puissant last updated on 10/Jul/21

okey  thanks

$$\mathrm{okey}\:\:\mathrm{thanks} \\ $$

Answered by mathmax by abdo last updated on 10/Jul/21

A_n =Σ_(p=n+1) ^(2n)  (1/p^α ) ⇒A_n =_(p−n=k)   Σ_(k=1) ^n  (1/((n+k)^α ))  n+k>n ⇒(1/((n+k)^α ))<(1/n^α ) ⇒A_n <(n/n^α )=(1/n^(α−1) )  but α−1>0 ⇒lim_(n→∞)  (1/n^(α−1) )=0 ⇒lim_(n→+∞)  A_n =0

$$\mathrm{A}_{\mathrm{n}} =\sum_{\mathrm{p}=\mathrm{n}+\mathrm{1}} ^{\mathrm{2n}} \:\frac{\mathrm{1}}{\mathrm{p}^{\alpha} }\:\Rightarrow\mathrm{A}_{\mathrm{n}} =_{\mathrm{p}−\mathrm{n}=\mathrm{k}} \:\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\alpha} } \\ $$$$\mathrm{n}+\mathrm{k}>\mathrm{n}\:\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\alpha} }<\frac{\mathrm{1}}{\mathrm{n}^{\alpha} }\:\Rightarrow\mathrm{A}_{\mathrm{n}} <\frac{\mathrm{n}}{\mathrm{n}^{\alpha} }=\frac{\mathrm{1}}{\mathrm{n}^{\alpha−\mathrm{1}} } \\ $$$$\mathrm{but}\:\alpha−\mathrm{1}>\mathrm{0}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\alpha−\mathrm{1}} }=\mathrm{0}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{A}_{\mathrm{n}} =\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com