Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 14614 by RasheedSoomro last updated on 03/Jun/17

If  5  doesn′t divide any of n,n+1,  n+2,n+3 then prove that         n(n+1)(n+2)(n+3)≡24(mod100)

$$\mathrm{If}\:\:\mathrm{5}\:\:\mathrm{doesn}'\mathrm{t}\:\mathrm{divide}\:\mathrm{any}\:\mathrm{of}\:\mathrm{n},\mathrm{n}+\mathrm{1}, \\ $$$$\mathrm{n}+\mathrm{2},\mathrm{n}+\mathrm{3}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)\left(\mathrm{n}+\mathrm{3}\right)\equiv\mathrm{24}\left(\mathrm{mod100}\right) \\ $$

Commented by mrW1 last updated on 03/Jun/17

n doesn′t divide n?  how is this to understand?

$$\mathrm{n}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{divide}\:\mathrm{n}? \\ $$$${how}\:{is}\:{this}\:{to}\:{understand}? \\ $$

Commented by RasheedSoomro last updated on 03/Jun/17

Sorry for error sir. Corrected now.

$$\mathrm{Sorry}\:\mathrm{for}\:\mathrm{error}\:\mathrm{sir}.\:\mathrm{Corrected}\:\mathrm{now}. \\ $$

Answered by mrW1 last updated on 03/Jun/17

n=5k+r with 1≤r≤4  n+1=5k+r+1  n+2=5k+r+2  n+3=5k+r+3  since r+1≠5,r+2≠5,r+3≠5  ⇒r=1  n=5k+1  n+1=5k+2  n+2=5k+3  n+3=5k+4  P=n(n+1)(n+2)(n+3)=  (5k+1)(5k+4)(5k+2)(5k+3)  =(25k^2 +25k+4)(25k^2 +25k+6)  =(25k^2 +25k)^2 +10(25k^2 +25k)+24  =2100[((k(k+1))/2)]^2 +1000[((k(k+1))/2)]+24  =2100m^2 +1000m+24  =100m(21m+10)+24  with m=((k(k+1))/2)  since one of k and k+1 must be even,  m is integer.  ⇒P≡24 (mod 100)

$${n}=\mathrm{5}{k}+{r}\:{with}\:\mathrm{1}\leqslant{r}\leqslant\mathrm{4} \\ $$$${n}+\mathrm{1}=\mathrm{5}{k}+{r}+\mathrm{1} \\ $$$${n}+\mathrm{2}=\mathrm{5}{k}+{r}+\mathrm{2} \\ $$$${n}+\mathrm{3}=\mathrm{5}{k}+{r}+\mathrm{3} \\ $$$${since}\:{r}+\mathrm{1}\neq\mathrm{5},{r}+\mathrm{2}\neq\mathrm{5},{r}+\mathrm{3}\neq\mathrm{5} \\ $$$$\Rightarrow{r}=\mathrm{1} \\ $$$${n}=\mathrm{5}{k}+\mathrm{1} \\ $$$${n}+\mathrm{1}=\mathrm{5}{k}+\mathrm{2} \\ $$$${n}+\mathrm{2}=\mathrm{5}{k}+\mathrm{3} \\ $$$${n}+\mathrm{3}=\mathrm{5}{k}+\mathrm{4} \\ $$$${P}={n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)= \\ $$$$\left(\mathrm{5}{k}+\mathrm{1}\right)\left(\mathrm{5}{k}+\mathrm{4}\right)\left(\mathrm{5}{k}+\mathrm{2}\right)\left(\mathrm{5}{k}+\mathrm{3}\right) \\ $$$$=\left(\mathrm{25}{k}^{\mathrm{2}} +\mathrm{25}{k}+\mathrm{4}\right)\left(\mathrm{25}{k}^{\mathrm{2}} +\mathrm{25}{k}+\mathrm{6}\right) \\ $$$$=\left(\mathrm{25}{k}^{\mathrm{2}} +\mathrm{25}{k}\right)^{\mathrm{2}} +\mathrm{10}\left(\mathrm{25}{k}^{\mathrm{2}} +\mathrm{25}{k}\right)+\mathrm{24} \\ $$$$=\mathrm{2100}\left[\frac{{k}\left({k}+\mathrm{1}\right)}{\mathrm{2}}\right]^{\mathrm{2}} +\mathrm{1000}\left[\frac{{k}\left({k}+\mathrm{1}\right)}{\mathrm{2}}\right]+\mathrm{24} \\ $$$$=\mathrm{2100}{m}^{\mathrm{2}} +\mathrm{1000}{m}+\mathrm{24} \\ $$$$=\mathrm{100}{m}\left(\mathrm{21}{m}+\mathrm{10}\right)+\mathrm{24} \\ $$$${with}\:{m}=\frac{{k}\left({k}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$${since}\:{one}\:{of}\:{k}\:{and}\:{k}+\mathrm{1}\:{must}\:{be}\:{even}, \\ $$$${m}\:{is}\:{integer}. \\ $$$$\Rightarrow{P}\equiv\mathrm{24}\:\left({mod}\:\mathrm{100}\right) \\ $$

Commented by RasheedSoomro last updated on 04/Jun/17

Thanks Sir!

$$\boldsymbol{\mathrm{T}}\mathrm{hanks}\:\boldsymbol{\mathrm{S}}\mathrm{ir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com