Question Number 148221 by 0731619 last updated on 26/Jul/21

Answered by Olaf_Thorendsen last updated on 26/Jul/21

N(x) = tan^2 (tanx)−tan^2 x  N(x) ∼_0  tan^2 (x+(x^3 /3)+((2x^5 )/(15)))−(x+(x^3 /3)+((2x^5 )/(15)))^2   N(x) ∼_0  ((x+(x^3 /3)+((2x^5 )/(15)))+(1/3)(x+(x^3 /3)+((2x^5 )/(15)))^3   +(2/(15))(x+(x^3 /3)+((2x^5 )/(15)))^5 )^2 −(x+(x^3 /3)+((2x^5 )/(15)))^2   N(x) ∼_0  ((x+(x^3 /3)+((2x^5 )/(15)))+((x^3 /3)+(x^5 /3))+(2/(15))x^5 )^2   −(x^2 +((2x^4 )/3)+((17x^6 )/(45)))  N(x) ∼_0  (x+((2x^3 )/3)+((9x^5 )/(15)))^2 −(x^2 +((2x^4 )/3)+((17x^6 )/(45)))  N(x) ∼_0  (x^2 +((4x^4 )/3)+((74x^6 )/(45)))−(x^2 +((2x^4 )/3)+((17x^6 )/(45)))  N(x) ∼_0  ((2x^4 )/3)+((19x^6 )/(15))  ⇒ p = 9×((19)/(15)), n = 4, q = 9×(2/3), r = 0, t = 0  p = ((57)/5), q = 6, r = 0, n = 4, t = 0