Question Number 148416 by mathdanisur last updated on 27/Jul/21

lim_(x→∞) ((x! - cos(2x))/(3x + 1)) = ?

Answered by mathmax by abdo last updated on 28/Jul/21

we have ((x!−cos(2x))/(3x+1))=((x!)/(3x+1))−((cos(2x))/(3x+1))  lim_(x→+∞)  ((cos(2x))/(3x+1))=0 because ∣cos(2x)∣≤1  x!∼x^x  e^(−x) (√(2πx)) ⇒((x!)/(3x+1))∼(1/3)×((x!)/x)∼(1/3)x^(x−1)  e^(−x) (√(2πx))  =(1/3)e^((x−1)logx−x)  (√(2πx))=(1/3)(√(2π)) e^((x−1)logx−(1/2))  →+∞(x→+∞) ⇒  lim_(x→+∞)  ((x!−cos(2x))/(3x+1))=+∞

Commented bymathdanisur last updated on 28/Jul/21

Thankyoy Ser