Question Number 148454 by mathdanisur last updated on 28/Jul/21

sin^6 𝛂 + co^6 𝛂 = (3/4)  ⇒  6cos4𝛂=?

Answered by Ar Brandon last updated on 28/Jul/21

sin^6 α+cos^6 α=(3/4)  (sin^2 α+cos^2 α)[(sin^2 α+cos^2 α)^2 −3sin^2 αcos^2 α]=(3/4)  1−3sin^2 αcos^2 α=(3/4)⇒sin^2 αcos^2 α=(1/(12))  6cos4α=6(cos^2 2α−sin^2 2α)  6cos4α=6[(cos^4 α−2sin^2 αcos^2 α+sin^4 α)−4sin^2 αcos^2 α]                 =6[(cos^2 α+sin^2 α)^2 −8sin^2 αcos^2 α]                 =6(1−8sin^2 αcos^2 α)=6(1−(8/(12)))=2

Commented bymathdanisur last updated on 28/Jul/21

Thank you Ser cool

Answered by Olaf_Thorendsen last updated on 28/Jul/21

sin^6 α = (((e^(iα) −e^(−iα) )/(2i)))^6   sin^6 α = −(1/(64))(e^(6iα) −6e^(i4α) +15e^(i2α) −20  +15e^(−i2α) −6e^(−i4α) +e^(−i6α) )  sin^6 α = −(1/(32))(cos6α−6cos4α+15cos2α−10)    cos^6 α = (((e^(iα) +e^(−iα) )/2))^6   cos^6 α = (1/(64))(e^(6iα) +6e^(i4α) +15e^(i2α) +20  +15e^(−i2α) +6e^(−i4α) +e^(−i6α) )  cos^6 α = (1/(32))(cos6α+6cos4α+15cos2α+10)    sin^6 α+cos^6 α = (3/4)  (1/(32))(12cos4α+20) = (3/4)  12cos4α = (3/4)×32−20 = 4  6cos4α = 2

Commented bymathdanisur last updated on 28/Jul/21

Thank you Ser cool