Question Number 148498 by mathmax by abdo last updated on 28/Jul/21

find ∫_0 ^∞   ((arctan(2x))/(1+x^2 ))dx

Answered by mathmax by abdo last updated on 29/Jul/21

Ψ=∫_0 ^∞  ((arctan(2x))/(1+x^2 ))dx let f(a)=∫_0 ^∞  ((arctan(ax))/(1+x^2 ))dx ⇒  f^′ (a)=∫_0 ^∞  (x/((1+a^2 x^2 )(x^2  +1)))dx =_(ax=y)   ∫_0 ^∞   (y/(a(1+y^2 )((y^2 /a^2 ) +1)))(dy/a)  =∫_0 ^∞   ((ydy)/((y^2  +1)(y^2  +a^2 )))=(1/(a^2 −1))∫_0 ^∞ y((1/(y^2 +1))−(1/(y^2  +a^2 )))dy  =(1/(2(a^2 −1))){∫_0 ^∞  ((2ydy)/(y^2 +1))−∫_0 ^∞  ((2ydy)/(y^2  +a^2 ))}  =(1/(2(a^2 −1))){log∣((y^2 +1)/(y^2  +a^2 ))∣]_0 ^(∞ ) =(1/(2(a^2 −1)))(−log((1/a^2 )))  =((2aloga)/(2(a^2 −1)))=((aloga)/(a^2 −1))  ⇒∫_0 ^2 f^′ (a)da =f(2)=∫_0 ^2  ((aloga)/(a^2 −1))da  =(1/2)∫_0 ^2  ((1/(a−1))+(1/(a+1)))loga da  =(1/2)∫_0 ^2  ((loga)/(a−1)) +(1/2)∫_0 ^2  ((loga)/(a+1))da   we have  ∫_0 ^2  ((loga)/(a−1))da =∫_0 ^1  ((loga)/(a−1))da +∫_1 ^2  ((loga)/(a−1))da(→a−1=t)  =−∫_0 ^1  ((loga)/(1−a))da +∫_0 ^1  ((log(t+1))/t)dt  but  ∫_0 ^1  ((loga)/(1−a))da =∫_0 ^1 logaΣ_(n=0) ^∞  a^(n ) da  =Σ_(n=0) ^∞  ∫_0 ^1  a^n  logada and A_n =∫_0 ^1  a^n loga da  =[(a^(n+1) /(n+1))loga]_0 ^1 −∫_0 ^1  (a^n /(n+1))da =−(1/((n+1)^2 )) ⇒  ∫_0 ^1  ((loga)/(1−a))da=−Σ_(n=0) ^∞  (1/((n+1)^2 ))=−(π^2 /6)  log^′ (t+1)=(1/(1+t))=Σ_(n=0) ^∞ (−1)^n  t^n  ⇒log(1+t)=Σ_(n=0) ^∞  (((−1)^n )/(n+1))t^(n+1)   =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)t^n  ⇒((log(t+1))/t)=Σ_(n=1) ^∞  (((−1)^(n−1) )/n)t^(n−1)  ⇒  ∫_0 ^1  ((log(1+t))/t)dt =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)∫_0 ^1  t^(n−1)  dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 ) =(1−2^(1−2) )ξ(2)=(1/2).(π^2 /6)=(π^2 /(12))  ∫_0 ^2  ((loga)/(a+1))da =∫_0 ^1  ((loga)/(a+1))da +∫_1 ^2  ((loga)/(a+1))da  =∫_0 ^1 logaΣ_(n=0) ^∞  (−a)^n  +∫_1 ^2  ((loga)/(a+1))da....be clntinued...

Commented bypuissant last updated on 29/Jul/21

merci monsieur j′apprecie votre   travail.. merci beaucoup prof..