Question Number 148501 by mathmax by abdo last updated on 28/Jul/21

let U_n ={z∈C /z^n  =1}  simplify  Σ_(p=0) ^(2n−1)  w^p         with w∈U_n      and  Σ_(p=0) ^(2n−1) (2w +1)^p

Answered by Olaf_Thorendsen last updated on 28/Jul/21

• w = 1  S_n (1) = Σ_(p=0) ^(2n−1) 1^p  = 2n  (trivial)    • w^n  = 1 and w ≠ 1  S_n (w) = Σ_(p=0) ^(2n−1) w^p  =((1−w^(2n) )/(1−w))  = ((1−1)/(1−w))  = 0    T_n (w) = Σ_(p=0) ^(2n−1) (2w+1)^p   T_n (w) =((1−(2w+1)^(2n) )/(1−(2w+1)))  = (((2w+1)^(2n) −1)/(2w))

Answered by mathmax by abdo last updated on 28/Jul/21

if w=1   A_n =Σ_(p=0) ^(2n−1)  w^p  =2n  if w≠1   Σ_(p=0) ^(2n−1)  w^p  =((1−w^(2n) )/(1−w))=((1−(w^n )^2 )/(1−w))=((1−1)/(1−w))=0  alsoB_n = Σ_(p=0) ^(2n−1)  (2w+1)^p   the roots of z^n  =1 are z_k =e^(i((2kπ)/n))   and 0≤k≤n−1 ⇒w≠−(1/2) ⇒B_n =((1−(2w+1)^(2n) )/(1−(2w+1)))  =(1/(2w)){(2w+1)^(2n) −1}  =(1/(2w)){Σ_(k=0) ^(2n) C_(2n) ^k  (2w)^k −1}  =(1/(2w))Σ_(k=0) ^(2n)  C_(2n) ^k  2^k  w^k