Question Number 148543 by liberty last updated on 29/Jul/21

Answered by Rasheed.Sindhi last updated on 30/Jul/21

Let ∠B=α , ∠C=β ,  △ABC:          AC^2 =AB^2 +BC^2 −2.AB.BC.cos α          AC^2 =8^2 +10^2 −2.8.10.cos α             =164−160cos α    △BCD:         BD^2 =10^2 +12^2 −2.10.12cos β                 =244−240cos β           AC^2 +CD^2 =AD^2 =(2R)^2         AB^2 +BD^2 =AD^2 =(2R)^2   Continue

Answered by mnjuly1970 last updated on 29/Jul/21

AC^( 2) =164−160cos(B)     AC^( 2) =4R^( 2) −144       164−160cos(B)=4R^( 2) −144        308−4R^( 2) =160cos(B)        308−4R^( 2) =160(−cos(D))       4R^( 2) −308=160.((12)/(2R))=((960)/R)         R^( 3) −77R−240=0

Answered by mr W last updated on 29/Jul/21

sin^(−1) (4/R)+sin^(−1) (5/R)+sin^(−1) (6/R)=(π/2)  cos (sin^(−1) (4/R)+sin^(−1) (5/R))=cos ((π/2)−sin^(−1) (6/R))  (√((1−((16)/R^2 ))(1−((25)/R^2 ))))−(4/R)×(5/R)=(6/R)  (1−((16)/R^2 ))(1−((25)/R^2 ))=(((20)/R^2 )+(6/R))^2   1=((77)/R^2 )+((240)/R^3 )  R^3 −77R−240=0  R=2(√((77)/3)) sin (((2π)/3)−(1/3)sin^(−1) ((120×3(√3))/(77(√(77)))))  ≈10.045

Commented byliberty last updated on 30/Jul/21

great

Answered by mr W last updated on 29/Jul/21

an other way:  AC=(√(4R^2 −12^2 ))  BD=(√(4R^2 −8^2 ))  ABCD is cyclic, therefore  AC×BD=AB×CD+BC×AD  ⇒(4R^2 −12^2 )(4R^2 −8^2 )=(8×12+20R)^2   ⇒R^3 −77R−240=0  ......

Commented byTawa11 last updated on 03/Aug/21

Great