Question Number 148573 by mathdanisur last updated on 29/Jul/21

log_(√x)  (x/y) = A  ⇒  log_(√y)  (y/x) = ?

Answered by Ar Brandon last updated on 29/Jul/21

A=log_(√x) (x/y)=log_(√x) x−log_(√x) y      =log_(√x) (√x) ^2 −((log_(√y) y)/(log_(√y) (√x)))=2−(2/(log_(√y) (√x)))  ⇒log_(√y) (√x)=(2/(2−A))  ⇒log_(√y) (y/x)=2−log_(√y) x=2−(4/(2−A))

Commented bypuissant last updated on 29/Jul/21

log((x/y))=log(x)−log(y)..

Commented byAr Brandon last updated on 29/Jul/21

Merci pour la remarque.

Commented bymathdanisur last updated on 29/Jul/21

Thank you Sir

Commented byAr Brandon last updated on 29/Jul/21

You′re welcome !

Answered by EDWIN88 last updated on 29/Jul/21

log _(√x) ((x/y))=A ⇒2log _x ((x/y))=A  log _x ((y/x))=−(A/2)⇒(y/x)=x^(−(A/2))   ⇒y=x^(1−(A/2))   log _(√y) ((y/x))=2log _y ((y/x))  = 2log_y  (x^(−(A/2)) )  =−Alog _y (x) =−Alog _((x^(1−(A/2)) )) (x)  =−A((2/(2−A)))log _x (x)  =((2A)/(A−2)) .

Commented bymathdanisur last updated on 29/Jul/21

Thank you Ser