Question Number 148677 by nadovic last updated on 30/Jul/21

  A series of natural numbers are     grouped as 1+(2+3)+(4+5+6)+...    such that the rth group contains r     terms. Show that the sum of the    numbers in the (2r−1)th group is                          r^4 −(r−1)^4 .

Answered by gsk2684 last updated on 30/Jul/21

t_1 =1  t_2 =((1)+1)+((1)+2)  t_3 =((1+2)+1)+((1+2)+2)+((1+2)+3)  ....  t_(2r−1) =  ((1+2+3+..+(2r−2)+1)+  ((1+2+3+..+(2r−2)+2)+  ((1+2+3+..+(2r−2)+3)+...  ((1+2+3+..+(2r−2)+2r−1)  =(2r−1)(1+2+3+..+(2r−2))+(1+2+3+..+(2r−1))  =(2r−1)(((2r−2)(2r−1))/2)+(((2r−1)(2r))/2)  =(r−1)(2r−1)^2 +(2r−1)r  =(2r−1){2r^2 −3r+1+r}  =(2r−1)(2r^2 −2r+1)    r^4 −(r−1)^4   =(r^2 −(r−1)^2 )(r^2 +(r−1)^2 )  =(2r−1)(2r^2 −2r+1)

Commented bynadovic last updated on 30/Jul/21

Thank Sir