Question Number 148753 by Jonathanwaweh last updated on 30/Jul/21

Answered by mathmax by abdo last updated on 31/Jul/21

A_n =Π_(k=2) ^n  e(1−(1/k^2 ))^k^2   ⇒A_n =e^(n−1)  Π_(k=2) ^n  (1−(1/k^2 ))^k^2    ⇒log(A_n )=n−1+Σ_(k=2) ^n  k^2 log(1−(1/k^2 ))  log^′ (1−u) =−(1/(1−u))=−(1+u+o(u)) ⇒  log(1−u)=−u−(u^2 /2)+o(u^2 ) ⇒  log(1−(1/k^2 ))=−(1/k^2 )−(1/(2k^4 ))+o((1/k^4 )) ⇒  k^2  log(1−(1/k^2 ))=−1−(1/(2k^2 ))+o((1/k^2 )) ⇒  logA_n ∼n−1+Σ_(k=2) ^n (−1−(1/(2k^2 ))) +o((1/n^2 ))  ⇒  logA_n ∼n−1−(n−1)−(1/2)Σ_(k=2) ^n  (1/k^2 )+o((1/n^2 ))   =−(1/2)(Σ_(k=1) ^n  (1/k^2 )−1)=(1/2)−(1/2)ξ_n (2) ⇒  lim_(n→+∞) logA_n =(1/2)−(π^2 /(12)) ⇒  lim_(n→+∞) A_n =e^((1/2)−(π^2 /(12)))  =(√e)×e^(−(π^2 /(12)))