Question Number 148825 by Zainalarifin last updated on 31/Jul/21

Answered by Zainalarifin last updated on 31/Jul/21

ΣIR+ΣE=0  i_1 +i_2 =i_3  →i_2  =i_3 −i_2  ......(1)  2i_1 +3i_3 +9−6=0  2i_1 +3i_3 =−3 ....(2)    6i_2 +3i_3 +9−12=0  6i_2 +3i_3 =3   6(i_3 −i_1 )+3i_3 =3  −6i_1 +9i_3  = 3 ....(3)  (2)→(3)   2i_1 +3i_3 =−3    ×3                  −6i_1 +9i_3  =    3                  −−−−−−−+                        6i_1 +9i_3 =−9                      −6i_1 +9i_3  =   3                 −−−−−−−+                         18i_3  = −6                              i_3  = −(1/3) A        2i_1 +3i_3 =−3        2i_1 −1=−3        2i_1 =−2 →i_1 =−1 A        i_2 =−(1/3)+1=(2/3) A

Answered by JDamian last updated on 31/Jul/21

 {: ((V_(AB) +V_(BC)  = V_(AC) )),((V_(DB) +V_(BC) =V_(DC) )) }     {: ((2I_x +3(I_x +I_y )+9= 6)),((6I_y +3(I_x +I_y )+9=12)) } ⇒  {: ((5I_x +3I_y = −3)),((3I_x +9I_y =      3)) }    I_x =( determinant (((−3),3),((     3),9))/ determinant ((5,3),(3,9)))=((−27−9)/(45−9))=((−36)/(36))= −1  A  I_y =( determinant ((5,(−3)),(3,(     3)))/ determinant ((5,3),(3,9)))=((15+9)/(45−9))=((24)/(36))= (2/3)  A