Question Number 148864 by jlewis last updated on 31/Jul/21

A random variable K has a pdf   f(k)={_(0      ,       otherwise) ^e^(−k   ,        0>k)      find E(K) and   the cdf

Answered by Olaf_Thorendsen last updated on 01/Aug/21

I suppose f(k) = e^(−k)  if k>0 otherwise  f is not a pdf.  ∫_(−∞) ^(+∞) f(x)dx = ∫_0 ^(+∞) e^(−x) dx = 1  E(K) = ∫_0 ^(+∞) xe^(−x) dx = [x(−e^(−x) )]_0 ^(+∞)   − ∫_0 ^(+∞) (−e^(−x) )dx = 1  E(K) =1  F(k) = ∫_0 ^k e^(−x) dx = 1−e^(−k)   F(k) =  { ((0 if k < 0)),((1−e^(−k)  if k ≥ 0)) :}

Commented byjlewis last updated on 01/Aug/21

hello sir,from [x(−e^(−x) )]_0 ^(+∞)    I dont get  where x has gone, and is x a variable?

Commented byOlaf_Thorendsen last updated on 01/Aug/21

I noted the variable x, but you can  write instead of x : z, flower, Mickey or  Donald Trump sir, if you prefer.