Question Number 149410 by mathdanisur last updated on 05/Aug/21

((log_2  2^(20)  + log_2  20 ∙ log_2  5 - 2 log_2  2^5 )/(log_2  20 + 2 log_2  5)) = ?

Answered by Rasheed.Sindhi last updated on 05/Aug/21

((log_2  2^(20)  + log_2  20 ∙ log_2  5 - 2 log_2  2^5 )/(log_2  20 + 2 log_2  5))   =((20 + log_2  20 ∙ log_2  5 - 2(5))/(log_2  20 + 2 log_2  5))    =((10 + log_2 (2^2 .5)∙ log_2  5 )/(log_2 (2^2 .5) + 2 log_2  5))    =((10 +(log_2 2^2 +log_2 5)∙ log_2  5 )/(log_2 2^2 +log_2 5 + 2 log_2  5))    =((10 +(2+log_2 5)∙ log_2  5 )/(2+ 3 log_2  5))    =((10 +2log_2 5+log_2 5∙ log_2  5 )/(2+ 3 log_2  5))    =((10 +2log_2 5+(log_2 5)^2  )/(2+ 3 log_2  5))    =((10 +2(2.3219)+(2.3219)^2  )/(2+ 3(2.3219)))≈2.2346

Commented bymathdanisur last updated on 05/Aug/21

Thank You Ser