Question Number 149428 by mr W last updated on 06/Aug/21

Commented bymr W last updated on 06/Aug/21

three non−collinear points in space   are given with coordinates  A(x_1 ,y_1 ,z_1 )  B(x_2 ,y_2 ,z_2 )  C(x_3 ,y_3 ,z_3 )  find the coordinates of the center S  and the radius R of the circumcircle.

Commented byajfour last updated on 06/Aug/21

sir, (apart from this); sir try plotting  z(x,y)={(x^2 −1)^3 +(y^2 −1)^3 }^2   see all views, change scale,  wonderful (i find)...

Commented bymr W last updated on 06/Aug/21

Commented byajfour last updated on 06/Aug/21

Answered by ajfour last updated on 06/Aug/21

A(a), B(b), C(c)  plane ABC  (s−a).((b−c)×(a−c))=0  let  S(s).  n^� =(((b−c)×(a−c))/(∣(b−c)×(a−c)∣))  let  s=(((b+c))/2)+((∣b−c∣)/(2tan A)){((n^� ×(b−c))/( ∣b−c∣))}  ∣s−a∣=∣s−b∣=∣s−c∣=R

Commented bymr W last updated on 06/Aug/21

thanks sir! i′ll also try to use vectors.

Commented byajfour last updated on 06/Aug/21

let  A(5,2,3)  ; B(3,5,5) ;           C(2,3,8)  n^� =(((i+2j−3k)×(2i−3j−2k))/(∣(i+2j−3k)×(2i−3j−2k)∣))   =((−3k+2j−4k+4i+6j−9i)/( (√(25+64+49))))    =((−5i+8j−7k)/( (√(138))))  s=(((5i+8j+13k))/2)   +((∣i+2j−3k∣)/(2tan A))(((−5i+8j−7k)/( (√(138))))×((i+2j−3k)/( (√(14)))))  let D be mid-point of AB=((a+b)/2)  CD=((a+b−2c)/2)=((4i+j−8k)/2)  ((AB)/2)=((−2i+3j+2k)/2)  tan A=((CD)/((AB)/2))=((√(16+1+64))/( (√(4+9+4))))    =(9/( (√(17))))  s=((5i+8j+13k)/2)  +((√(17))/(18(√(138))))(−10k−15j−8k−24i                              −7j+14i)  s=((5i+8j+13k)/2)    +(((√(17))(−10i−22j−18k))/(18(√(138))))  R=∣s−a∣

Commented bymr W last updated on 07/Aug/21

i got it! it′s a great idea with (1/(tan A))!

Commented byajfour last updated on 07/Aug/21

Answered by mr W last updated on 07/Aug/21

Commented bymr W last updated on 07/Aug/21

let a=OA^(→) , b=OB^(→) , c=OC^(→) , s=OS^(→)   let p=AB^(→) , q=BC^(→) , r=CA^(→)   normal of plane ABC:  n=((r×q)/(∣r×q∣))  D=midpoint of AB  OD^(→) =((a+b)/2)  ∣DS^(→) ∣=((∣AB^(→) ∣)/2)tan φ=((∣p∣)/(2 tan ∠C))  DS^(→) =∣DS^(→) ∣((p×n)/(∣p∣))=((∣p∣)/(2 tan ∠C))×((p×(r×q))/(∣p∣∣r×q∣))  DS^(→) =(1/(tan ∠C))×((p×(r×q))/(2∣r×q∣))  s=OD^(→) +DS^(→)   s=((a+b)/2)+(1/(tan ∠C))×((p×(r×q))/(2∣r×q∣))  cos C=−((q∙r)/(∣q∣∣r∣))  sin C=((∣q×r∣)/(∣q∣∣r∣))  (1/(tan C))=−((q∙r)/(∣q×r∣))  s=((a+b)/2)−((q∙r)/(∣q×r∣))×((p×(r×q))/(2∣r×q∣))  ⇒s=(1/2){a+b+((q∙r)/(∣q×r∣^2 )) p×(q×r)}  ⇒R=∣s−a∣=∣s−b∣=∣s−c∣  or R=((∣p∣)/(2 sin ∠C))=((∣p∣∣q∣∣r∣)/(2∣q×r∣))    example:  A(5,2,3), B(3,5,5), C(2,3,8)  p=(−2,3,2)  q=(−1,−2,3)  r=(3,−1,−5)  q∙r=−3+2−15=−16  q×r= determinant (((−1),(−2),3),(3,(−1),(−5)))=(13,4,7)  ∣q×r∣^2 =13^2 +4^2 +7^2 =234  p×(q×r)= determinant (((−2),3,2),((13),4,7))=(13,40,−47)  s=(1/2){(5,2,3)+(3,5,5)−((16)/(234))(13,40,−47)}    =(((32)/9),((499)/(234)),((656)/(117)))  R^2 =∣AS^(→) ∣^2 =(((32)/9)−5)^2 +(((499)/(234))−2)^2 +(((656)/(117))−3)^2 =((4165)/(468)) ✓  R^2 =∣BS^(→) ∣^2 =(((32)/9)−3)^2 +(((499)/(234))−5)^2 +(((656)/(117))−5)^2 =((4165)/(468)) ✓  R^2 =∣CS^(→) ∣^2 =(((32)/9)−2)^2 +(((499)/(234))−3)^2 +(((656)/(117))−8)^2 =((4165)/(468)) ✓  R=(√((4165)/(468)))=((7(√(1105)))/(78))

Commented bymr W last updated on 07/Aug/21

a special case  A(u,0,0)  B(0,v,0)  C(0,0,w)  p=(−u,v,0)  q=(0,−v,w)  r=(u,0,−w)  q∙r=−w^2   q×r= determinant ((0,(−v),w),(u,0,(−w)))=(vw,wu,uv)  ∣q×r∣^2 =u^2 v^2 +v^2 w^2 +w^2 u^2   p×(q×r)= determinant (((−u),v,0),((vw),(wu),(uv)))=(uv^2 ,u^2 v,−w(u^2 +v^2 ))  s=(1/2){(u,0,0)+(0,v,0)−(w^2 /(u^2 v^2 +v^2 w^2 +w^2 u^2 )) (uv^2 ,u^2 v,−w(u^2 +v^2 ))}  =(1/2){u−((uv^2 w^2 )/(u^2 v^2 +v^2 w^2 +w^2 u^2 )),v−((u^2 vw^2 )/(u^2 v^2 +v^2 w^2 +w^2 u^2 )),((w^3 (u^2 +v^2 ))/(u^2 v^2 +v^2 w^2 +w^2 u^2 ))}  =(1/2){((u^3 (v^2 +w^2 ))/(u^2 v^2 +v^2 w^2 +w^2 u^2 )),((v^3 (w^2 +u^2 ))/(u^2 v^2 +v^2 w^2 +w^2 u^2 )),((w^3 (u^2 +v^2 ))/(u^2 v^2 +v^2 w^2 +w^2 u^2 ))}    ∣p∣=(√(u^2 +v^2 ))  ∣q∣=(√(v^2 +w^2 ))  ∣r∣=(√(w^2 +u^2 ))  ∣q×r∣=(√(u^2 v^2 +v^2 w^2 +w^2 u^2 ))  ⇒R=(1/2)(√(((u^2 +v^2 )(v^2 +w^2 )(w^2 +u^2 ))/(u^2 v^2 +v^2 w^2 +w^2 u^2 )))