Question Number 149469 by mathdanisur last updated on 05/Aug/21

Compare:  1900^(3/4)  +  99^(3/4)    and   1999^(3/4)

Answered by mindispower last updated on 05/Aug/21

f(x)=x^(3/4) +(1−x)^(3/4) ,x∈[0,1[,f(1−x)=f(x)  f′(x)=(3/4)((1/x^(1/4) )−(1/((1−x)^(1/4) )))=(3/4)((((1−x)^(1/4) −x^(1/4) )/((x(1−x))^(1/4) )))  if x≤(1/2),f′>0  if x∈](1/2),1[ f′<0  f(1)=f(0)=1  ⇒∀x∈[0,1]  f(x)≥1  for x=((1900)/(1999))  f(((1900)/(1999)))=(((1900)/(1999)))^(3/4) +(1−((1900)/(1999)))^(3/4) ≥1  ⇒(1900)^(3/4) +99^(3/4) ≥1999^(3/4)

Commented bymathdanisur last updated on 05/Aug/21

Thank You Ser Cool

Commented bymathdanisur last updated on 06/Aug/21

Ser, can it be written as Newton′s   Binomial or inequality.?