Question Number 149478 by mathdanisur last updated on 05/Aug/21

Solve for real numbers:  x^2 −2x−3siny−4cosy + 6 = 0

Commented byiloveisrael last updated on 06/Aug/21

Δ≥0  3sin y+4cosy−6≥−1  5  sin (y+tan^(−1) ((4/3)))≥5  sin (y+tan ^(−1) ((4/3)))=1  ⇒y+tan^(−1) ((4/3))= (π/2)+2kπ  ⇒y=(π/2)−tan^(−1) ((4/3))+2kπ

Commented bymathdanisur last updated on 06/Aug/21

Thankyou Ser

Answered by mr W last updated on 05/Aug/21

3siny−4cosy =x^2 −2x+6  5(siny (3/5)−cosy (4/5)) =x^2 −2x+6  5(siny cos α−cosysin α) =(x−1)^2 +5  with cos α=(3/5), sin α=(4/5), tan α=(4/3)  5 sin (y−α)=(x−1)^2 +5  5 sin (y−tan^(−1) (4/3))=(x−1)^2 +5  LHS≤5  RHS≥5  ⇒LHS=RHS=5  ⇒x=1  ⇒sin (y−tan^(−1) (4/3))=1  ⇒y−tan^(−1) (4/3)=2kπ+(π/2)  ⇒y=2kπ+(π/2)+tan^(−1) (4/3)

Commented bymathdanisur last updated on 05/Aug/21

Thank you Ser, cool

Commented bypeter frank last updated on 05/Aug/21

explanation 2nd and 3rd line

Commented bymr W last updated on 05/Aug/21

i added some lines more.

Commented bypeter frank last updated on 05/Aug/21

thank you

Commented byTawa11 last updated on 05/Aug/21

great

Answered by MJS_new last updated on 05/Aug/21

x=1±(√(−5+3sin y +4cos y))  −10≤−5+3sin y +4cos y ≤0  ⇒  −5+3sin y +4cos y =0 ⇔ y=2nπ+arctan (3/4)  ⇒  solution is  x=1∧y=2nπ+arctan (3/4)∀n∈Z

Commented bymathdanisur last updated on 05/Aug/21

Thank you Ser, cool