Question Number 149567 by mathdanisur last updated on 06/Aug/21

if  q  is prime number fixed, then  solve for natural numbers the equation:  (1/q) = (1/x) + (1/y) - (1/z)

Commented byRasheed.Sindhi last updated on 07/Aug/21

My answer is too lengthy.  The question is waiting for a better  solution.

Commented bymathdanisur last updated on 07/Aug/21

Dear Ser  We hawe: (1/n) = (1/(2(n-1))) + (1/(2(n+1))) - (1/((n-1)(n+1)))  ⇒ n=q ....  Ser, this true or wrong.?

Commented byRasheed.Sindhi last updated on 07/Aug/21

(1/(2(q−1)))+(1/(2(q+1)))−(1/((q−1)(q+1)))     =((q+1+q−1−2)/(2(q−1)(q+1)))=((2q−2)/(2(q−1)(q+1)))  =((2(q−1))/(2(q−1)(q+1)))=(1/(q+1))≠(1/q)  Not correct ser.

Commented bymathdanisur last updated on 07/Aug/21

Sorry Ser,  ... (1/(n(n-1)(n+1)))

Commented byRasheed.Sindhi last updated on 07/Aug/21

 (1/(2(n-1))) + (1/(2(n+1))) - (1/(n(n-1)(n+1)))  ((n(n+1)+n(n−1)−2)/(2n(n-1)(n+1)))  ((n^2 +n+n^2 −n−2)/(2n(n-1)(n+1)))=((2n^2 −2)/(2n(n-1)(n+1)))  ((2(n−1)(n+1))/(2n(n-1)(n+1)))=(1/n) ✓  It means that this is the solution.

Answered by Rasheed.Sindhi last updated on 07/Aug/21

(1/q) = (1/x) + (1/y) - (1/z) ;q∈P∧ x,y,z∈N  ((xyz)/q)=−xy+yz+zx................(A)  q∣x ∨ q∣y ∨ q∣z  3 cases: { ((C(1):x=mq)),((C(2):y=mq)),((C(3):z=mq)) :}  C(1): x=mq ; m∈{1,2,3,...}  (A)⇒myz=−mqy+yz+mqz  yz(m−1)=mq(z−y)  yz=((mq(z−y))/(m−1))................(B)  (m−1)∣m ∨ (m−1)∣q ∨ (m−1)∣(z−y)   : { ((C(1a):(m−1)∣m⇒m−1=1⇒m=2)),((C(1b):(m−1)∣q⇒m=2 or m=q+1)),((C(1c):(m−1)∣(z−y)⇒y≡z(mod m−1))) :}      C(1a):m=2       (B)⇒yz=2q(z−y)⇒y∈E ∨ z∈E        : { (((∗)y=2u,z=2v⇒4uv=4q(v−u))),(((∗∗)y=2u⇒2uz=2q(z−2u))),(((∗∗∗)z=2u⇒2uy=2q(2u−y))) :}    (∗)uv=q(v−u): { ((qk.ql=q(ql−qk)⇒kl=l−k^• )),((qk.v=q(v−qk)⇒kv=v−qk^(••) )),((u.qk=q(qk−u)⇒uk=(qk−u))) :}      ^• lk−l+k=0       l(k−1)=−k        l=(k/(1−k))⇒(1−k)∣k        ⇒1−k=1⇒k=2⇒u=qk=2q        ⇒y=2u=4q      l=(2/(1−2))=−2⇒v=ql=−2q     ⇒z=2v=2(−2q)=−4q∉N  x=mq=2q  (x,y,z)=(2q,4q,−4q) if x,y,z∈Z   ^(••) kv=v−qk       qk=v−kv=v(1−k)       qk=v(1−k)       q=−((v(k−1))/k)      k∤(k−1)⇒k∣v  v=kt⇒q=−t(k−1)  ∵q∈P⇒k−1=−1⇒k=0⇒q=t  ⇒v=qk⇒z=2v=2qk  u=qk⇒y=2u=2qk  Continue...

Commented byRasheed.Sindhi last updated on 07/Aug/21

If we allow x,y,z∈Z  (x,y,z)=(2q,4q,−4q) is a general  solution.  Verification:  (1/q) = (1/x) + (1/y) - (1/z)  (1/q) = (1/(2q)) + (1/(4q)) - (1/(−4q))=((2+1+1)/(4q))=(1/q)  Too lengthy to continue

Commented bymathdanisur last updated on 07/Aug/21

Ser, thank you cool

Answered by Rasheed.Sindhi last updated on 06/Aug/21

(1/q)=(1/x)+(1/y)−(1/z) ;q∈P ∧ x,y,z∈N  (It′s obvious that x & y are exchangeable.)  ((xyz)/q)=−xy+yz+zx  q∣x ∨ q∣y ∨ q∣z   case1:x=mq   myz=−mqy+yz+mqz  yz(m−1)=−mq(y−z)  yz=((mq(z−y))/(m−1))   { (((m−1) ∣ m⇒m=2)),(((m−1) ∣ q⇒m−1=1 or m−1=q⇒ { ((m=2)),((m=q+1)) :})),(((m−1)∣ (z−y))) :}   subcase1:m=2  yz=2q(z−y)  At least one of y , z is even.  ((yz)/(z−y))=2q  (a): y,z∈E:y=2u,z=2v  ((2u.2v)/(2v−2u))=2q  ((uv)/(v−u))=q.......(∗)      { ((v−u=1)),(((v−u)∣uv)) :}        v−u=1⇒v=u+1        u(u+1)=q⇒u=1⇒q=2  (∗)⇒(v/(v−1))=2⇒v=2v−2⇒v=2  y=2u=2(1)=2,z=2v=2(2)=4  x=mq=2×2=4  (x,y,z)=(4,2,4) for q=2  Continue

Commented bymathdanisur last updated on 06/Aug/21

Ser, thank you

Commented byRasheed.Sindhi last updated on 07/Aug/21

Two (obvious) general solutions:  x=z ∧ y=q  y=z ∧ x=q