Question Number 1497 by Rasheed Soomro last updated on 14/Aug/15

Find complex numbers α and β such that  α^2 =β^3   and  β^2 =α^3

Commented by123456 last updated on 14/Aug/15

(α,β)=(0,0) is ome of these pairs

Commented byRasheed Ahmad last updated on 14/Aug/15

(1,1) is an other pair.

Commented by123456 last updated on 15/Aug/15

 { ((α^2 =β^3 )),((β^2 =α^3 )) :}  n∈N^∗    { ((α^(4n) =β^(6n) )),((β^(6n) =α^(9n) )) :}  α^(4n) =α^(9n) ⇔α^(4n) (α^(5n) −1)=0   { ((α^(6n) =β^(9n) )),((β^(4n) =α^(6n) )) :}  β^(4n) =β^(9n) ⇔β^(4n) (β^(5n) −1)=0

Commented byRasheed Soomro last updated on 16/Aug/15

α^2 =β^3   (α^2 )^2 =(β^( 3) )^2   α^4 =(β^( 2) )^3   α^4 =(α^3 )^3       [substituting β^( 2) =α^3 ]  α^4 =α^9   Assuming α≠0,dividing by α^4   α^5 =1⇒α=^5  (√1)  Similarily ,  β^( 5) =1⇒β=^5 (√1)  ∴ α and β both are 5th roots of unity.  We know that   nth root of unity=(cos((2π)/n)+ı sin((2π)/n) )^k   , k=0,1,2,...(n−1)  5th root of unity=(cos((2π)/5)+ı sin((2π)/5) )^k   , k=0,1,2,...4  Let cos((2π)/5)+ı sin((2π)/5)  =ω  5th root of unity=1,ω,ω^2 ,ω^3 ,ω^4       (in order)  Square of ∽         =1,ω^2 ,ω^4 ,ω,ω^3        (in order)  Cube of ∽             =1,w^3 ,ω,ω^4 ,ω^2         (in order)  (𝛚^k_1  )^2  = (𝛚^k_2  )^3      k_1  , k_2  = 0,1,2,3,4  𝛚^(2k_1 (mod 5))  =𝛚^(3k_2 (mod 5))   For 2k_1 (mod 5)=3k_2 (mod 5)  :  (α,β)=(ω^k_1   , ω^k_2  )=(ω^k_2  , ω^k_1  )  (α,β)={(1,1),(ω,ω^4 ),(ω^4 ,ω),(ω^2 ,ω^3 ),(ω^3 ,ω^2 )}

Commented by123456 last updated on 15/Aug/15

good approach :)

Commented byRasheed Soomro last updated on 16/Aug/15

Thanks. Please comment, although in negative , on my   answers to Q−1448  and  Q−1466. If  the comments be  positive I will gain confidence and if they are negative  I will learn something. So please.....

Answered by 123456 last updated on 15/Aug/15

 { ((α^2 =β^3 )),((β^2 =α^3 )) :}⇒ { ((α^4 =β^6 )),((β^6 =α^9 )) :}  α^4 =α^9   α^9 −α^4 =0  α^4 (α^5 −1)=0  α=0∨α=(1)^(1/5)   α=0⇒ { ((β^3 =0)),((β^2 =0)) :}⇒β=0  α=1⇒ { ((β^3 =1)),((β^2 =1)) :}⇒ { ((β=1∨β=−(1/2)+((√3)/2)ı∨β=−(1/2)−((√3)/2)ı)),((β=1∨β=−1)) :}⇒β=1  α=e^(72°ı) ⇒ { ((β^3 =e^(144°ı) )),((β^2 =e^(216°ı) )) :}⇒ { ((β=e^(48°ı) ∨β=e^(168°ı) ∨β=e^(288°ı) )),((β=e^(108°ı) ∨β=e^(288°ı) )) :}⇒β=e^(288°ı)   α=e^(144°ı) ⇒ { ((β^3 =e^(288°ı) )),((β^2 =e^(72°ı) )) :}⇒ { ((β=e^(96°ı) ∨β=e^(216°ı) ∨β=e^(336°ı) )),((β=e^(36°ı) ∨β=e^(216°ı) )) :}⇒β=e^(216°ı)   α=e^(216°ı) ⇒ { ((β^3 =e^(72°ı) )),((β^2 =e^(288°ı) )) :}⇒ { ((β=e^(24°ı) ∨β=e^(144°ı) ∨β=e^(264°ı) )),((β=e^(144°ı) ∨β=e^(324°ı) )) :}  α=e^(288°ı) ⇒ { ((β^3 =e^(216°ı) )),((β^2 =e^(144°ı) )) :}⇒ { ((β=e^(72°ı) ∨β=e^(192°ı) ∨β=e^(312°ı) )),((β=e^(72°ı) ∨β=e^(252°ı) )) :}⇒β=e^(72°ı)   S={(0,0),(1,1),(e^(72°ı) ,e^(288°ı) ),(e^(144°ı) ,e^(216°ı) ),(e^(216°ı) ,e^(144°ı) ),(e^(288°ı) ,e^(72°ı) )}

Commented byRasheed Ahmad last updated on 15/Aug/15

(Rasheed Soomro)  Excellent Sir!

Commented by123456 last updated on 15/Aug/15

i know  x°=x(π/(180))(°→rad)  e^(xı) =cos x+ısin x(x are mesuared in rad)  e^((x+360°k)ı) =e^(xı) ,k∈Z