Question Number 149766 by mathdanisur last updated on 07/Aug/21

Find the roots of the equation:  x^2  + x + 1 + (1/(x^2  + x + 1)) = ((10)/3)

Commented byamin96 last updated on 07/Aug/21

x^2 +x+1=y    ⇒  y+(1/y)=((10)/3)  y^2 +1=((10y)/3)  ⇒  3y^2 −10y+3=0  Δ=100−36=64    y=((10+8)/6)=3  x^2 +x+1=3  ⇒  x^2 +x−2=0   Δ=9   { ((x_1 =((−1+3)/2)=1)),((x_2 =((−1−3)/2)=−2)) :}

Commented bymathdanisur last updated on 07/Aug/21

Thankyou Ser

Answered by Canebulok last updated on 07/Aug/21

   Solution:  let:  ⇒ x^2 +x+1 = k  ∵  ⇒ k+(1/k) = ((10)/3)  ⇒ k^2 +1 = ((10)/3)∙k  ⇒ k^2 −((10)/3)∙k+1 = 0  By using quadratic formula:  ⇒ k = (((((10)/3))±(√((−((10)/3))^2 −4)))/2)               = (((((10)/3))±(√((64)/9)))/2)  ∵  ⇒ k = 3   ;   k = (1/3)  By substituting back:  (1st solutions)  ⇒ x^2 +x+1 = 3  ⇒ x^2 +x−2 = 0  ⇒ (x+2)(x−1) = 0  ⇒ x_1  = −2   ;  x_2  = 1     (2nd solutions)  ⇒ x^2 +x+1 = (1/3)  ⇒ x^2 +x+(2/3) = 0  By quadratic formula:  ⇒ x = ((−1±(√(1^2 −4((2/3)))))/2)           x_(3,4)   = ((−1±i(√(5/3)))/2)     Solution by: Kevin

Commented bymathdanisur last updated on 07/Aug/21

Thankyou Ser