Question Number 149813 by mathdanisur last updated on 07/Aug/21

∫(−1)^([x])  dx = ?

Commented byDonQuichote last updated on 07/Aug/21

deal: you show me your solution idea first  then I′ll show you mine

Answered by mathmax by abdo last updated on 08/Aug/21

f(x)=∫_0 ^x  (−1)^([t])  dt ⇒f(x)=Σ_(k=0) ^([x])  ∫_k ^(k+1)  (−1)^k  dt +∫_([x]) ^x  (−1)^([t])  dt  =Σ_(k=0) ^([x])  (−1)^k +∫_([x]) ^x (−1)^([t]) dt =((1−(−1)^([x]+1) )/2) +∫_([x]) ^x  (−1)^([t])  dt  if x from N  ∫_([x]) ^x  (−1)^([t])  dt=0 ⇒∫_0 ^x  (−1)^([t])  dt=((1−(−1)^(x+1) )/2)

Commented bymathdanisur last updated on 08/Aug/21

Thank you Ser  but, (−1)=e^(iπ)  ⇒ (−1)^(3iπ)  = (−1)^(5iπ)  = ... .?