Question Number 149894 by ajfour last updated on 08/Aug/21

Commented byajfour last updated on 08/Aug/21

Find minimum and maximum  values for the side of equilateral  triangle shown.

Answered by mr W last updated on 08/Aug/21

Commented bymr W last updated on 08/Aug/21

Commented bymr W last updated on 08/Aug/21

P(h+r cos θ,k+r sin θ)  eqn. of AP:  y=k+r sin θ+m_1 x  eqn. of BP:  y=k+r sin θ+mx  tan (π/3)=((m_1 −m)/(1+m_1 m))=(√3)  ⇒m_1 =((m+(√3))/(1−(√3)m))  s=(h+r cos θ)(√(1+m^2 ))  s=(k+r sin θ)(√(1+(1/m_1 ^2 )))  with α=(√(1+m^2 )), β=(√(1+(1/m_1 ^2 )))  (h+r cos θ)α=(k+r sin θ)β  r(β sin θ−α cos θ)=αh−βk  r(√(α^2 +β^2 )) sin (θ−tan^(−1) (α/β))=αh−βk  sin (θ−tan^(−1) (α/β))=((αh−βk)/(r(√(α^2 +β^2 ))))  ⇒θ=tan^(−1) (α/β)+sin^(−1) (((αh−βk)/(r(√(α^2 +β^2 ))))) or  ⇒θ=tan^(−1) (α/β)+π−sin^(−1) (((αh−βk)/(r(√(α^2 +β^2 )))))

Commented byajfour last updated on 08/Aug/21

sir m, m_1   stand undetermined.

Commented byajfour last updated on 08/Aug/21

A(scos θ,0)  ;  B(0,ssin θ)  P(((scos θ)/2)+((s(√3)sin θ)/2), ((ssin θ)/2)+((s(√3)cos θ)/2))  s^2 (cos θ+(√3)sin θ−2h)^2   +s^2 (sin θ+(√3)cos θ−2k)^2 =4r^2   s=((2r)/( (√((cos θ+(√3)sin θ−2h)^2 +(sin θ+(√3)cos θ−2k)^2 ))))  s=((2r)/( (√(D(θ)))))  D(θ)=4+4(h^2 +k^2 )       +4(√3)sin θcos θ       −2(√3)(hsin θ+kcos θ)       −2(hcos θ+ksin θ)   =4(h^2 +k^2 +1)+2(√3)sin 2θ   −2(√(h^2 +k^2 )){(√3)sin (θ+ϕ)+cos (θ−ϕ)}  (dD/dθ)=0  ⇒       2(√3)cos 2θ=    (√(h^2 +k^2 )){(√3)cos (θ+ϕ)−sin (θ−ϕ)}    where   tan ϕ=(k/h)  s=((2r)/( (√((cos θ+(√3)sin θ−2h)^2 +(sin θ+(√3)cos θ−2k)^2 ))))

Commented bymr W last updated on 08/Aug/21

i tried to find the length s in terms of  m in following way:  m_1 =((m+(√3))/(1−(√3)m))  α=(√(1+m^2 )), β=(√(1+(1/m_1 ^2 )))  θ=tan^(−1) (α/β)+sin^(−1) (((αh−βk)/(r(√(α^2 +β^2 ))))) or  θ=tan^(−1) (α/β)+π−sin^(−1) (((αh−βk)/(r(√(α^2 +β^2 )))))  s=(h+r cos θ)(√(1+m^2 ))  then graphically find the maximum  and minimum of s.

Commented bymr W last updated on 08/Aug/21

Commented bymr W last updated on 10/Aug/21

sir, please check:  s^2 (cos θ+(√3)sin θ−2h/s)^2   +s^2 (sin θ+(√3)cos θ−2k/s)^2 =4r^2