Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 152105 by talminator2856791 last updated on 25/Aug/21

                ∫_0 ^( ∞)  (1/(⌊x+1⌋)) − (1/(x+1)) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{1}}{\lfloor{x}+\mathrm{1}\rfloor}\:−\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:{dx} \\ $$$$\: \\ $$

Answered by Olaf_Thorendsen last updated on 25/Aug/21

I = ∫_0 ^∞ ((1/(⌊x+1⌋))−(1/(x+1))) dx  I = Σ_(n=0) ^∞ ∫_n ^(n+1) ((1/(⌊x+1⌋))−(1/(x+1))) dx  I = Σ_(n=0) ^∞ ∫_n ^(n+1) ((1/(n+1))−(1/(x+1))) dx  I = Σ_(n=0) ^∞ [(x/(n+1))−ln(x+1)]_n ^(n+1)   I = Σ_(n=0) ^∞ ((1/(n+1))−ln(n+2)+ln(n+1))  I = Σ_(n=1) ^∞ ((1/n)−ln(n+1)+ln(n))  Let S_N  = Σ_(n=1) ^N ((1/n)−ln(n+1)+ln(n))  S_N  = H_N −ln(N+1)  H_N  = lnN+γ+(1/(2N))−(1/(12N^2 ))+o((1/N^4 ))  ⇒ S_N  = ln(N/(N+1))+γ+(1/(2N))−(1/(12N^2 ))+o((1/N^4 ))  I = lim_(N→∞)  S_N  = γ    I = γ

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\lfloor{x}+\mathrm{1}\rfloor}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right)\:{dx} \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{{n}} ^{{n}+\mathrm{1}} \left(\frac{\mathrm{1}}{\lfloor{x}+\mathrm{1}\rfloor}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right)\:{dx} \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{{n}} ^{{n}+\mathrm{1}} \left(\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right)\:{dx} \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{{x}}{{n}+\mathrm{1}}−\mathrm{ln}\left({x}+\mathrm{1}\right)\right]_{{n}} ^{{n}+\mathrm{1}} \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}−\mathrm{ln}\left({n}+\mathrm{2}\right)+\mathrm{ln}\left({n}+\mathrm{1}\right)\right) \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\mathrm{ln}\left({n}+\mathrm{1}\right)+\mathrm{ln}\left({n}\right)\right) \\ $$$$\mathrm{Let}\:\mathrm{S}_{\mathrm{N}} \:=\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{N}} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\mathrm{ln}\left({n}+\mathrm{1}\right)+\mathrm{ln}\left({n}\right)\right) \\ $$$$\mathrm{S}_{\mathrm{N}} \:=\:{H}_{\mathrm{N}} −\mathrm{ln}\left(\mathrm{N}+\mathrm{1}\right) \\ $$$${H}_{\mathrm{N}} \:=\:\mathrm{lnN}+\gamma+\frac{\mathrm{1}}{\mathrm{2N}}−\frac{\mathrm{1}}{\mathrm{12N}^{\mathrm{2}} }+{o}\left(\frac{\mathrm{1}}{\mathrm{N}^{\mathrm{4}} }\right) \\ $$$$\Rightarrow\:\mathrm{S}_{\mathrm{N}} \:=\:\mathrm{ln}\frac{\mathrm{N}}{\mathrm{N}+\mathrm{1}}+\gamma+\frac{\mathrm{1}}{\mathrm{2N}}−\frac{\mathrm{1}}{\mathrm{12N}^{\mathrm{2}} }+{o}\left(\frac{\mathrm{1}}{\mathrm{N}^{\mathrm{4}} }\right) \\ $$$$\mathrm{I}\:=\:\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{S}_{\mathrm{N}} \:=\:\gamma \\ $$$$ \\ $$$$\mathrm{I}\:=\:\gamma \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com