Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 152186 by Tawa11 last updated on 26/Aug/21

∫x^n  cos(nx) dx

$$\int\mathrm{x}^{\mathrm{n}} \:\mathrm{cos}\left(\mathrm{nx}\right)\:\mathrm{dx} \\ $$

Answered by mindispower last updated on 26/Aug/21

nx=y  ⇔(1/n^(n+1) )∫y^n cos(x)dx  =(1/(2.n^(n+1) ))(∫y^n e^(iy) dy+∫y^n e^(−iy) dy)  iy=−t,in first −iy=−w  2nd⇒  =(1/2).(1/n^(n+1) )(i^(n+1) ∫t^n e^(−t) dt+(−i)^(n+1) ∫w^n e^(−w) dt)  (i^(n+1) /(2.n^(n+1) ))∫t^n e^(−t) dt+(((−i)^(n+1) )/n^(n+1) )∫w^n e^(−w) dw  recall Γ(a,x) incomplet Gamma function  Γ(a,x): ∫_0 ^a t^(x−1) e^(−t) dt  We Get   (i^(n+1) /(2.n^(n+1) ))Γ(t,n+1)+(((−i)^(n+1) )/(2.n^(n+1) ))Γ(w,n+1)  =(1/2)((i/n))^(n+1) Γ(−inx,n+1)+(1/2)(−(i/n))^(n+1) Γ(inx,n+1)  ∫x^n cos(nx)dx  =(1/2)((i/n))^(n+1) (Γ(−inx,n+1)+(−1)^(n+1) Γ(inx,n+1))+c

$${nx}={y} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{{n}^{{n}+\mathrm{1}} }\int{y}^{{n}} {cos}\left({x}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}.{n}^{{n}+\mathrm{1}} }\left(\int{y}^{{n}} {e}^{{iy}} {dy}+\int{y}^{{n}} {e}^{−{iy}} {dy}\right) \\ $$$${iy}=−{t},{in}\:{first}\:−{iy}=−{w}\:\:\mathrm{2}{nd}\Rightarrow \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{{n}^{{n}+\mathrm{1}} }\left({i}^{{n}+\mathrm{1}} \int{t}^{{n}} {e}^{−{t}} {dt}+\left(−{i}\right)^{{n}+\mathrm{1}} \int{w}^{{n}} {e}^{−{w}} {dt}\right) \\ $$$$\frac{{i}^{{n}+\mathrm{1}} }{\mathrm{2}.{n}^{{n}+\mathrm{1}} }\int{t}^{{n}} {e}^{−{t}} {dt}+\frac{\left(−{i}\right)^{{n}+\mathrm{1}} }{{n}^{{n}+\mathrm{1}} }\int{w}^{{n}} {e}^{−{w}} {dw} \\ $$$${recall}\:\Gamma\left({a},{x}\right)\:{incomplet}\:{Gamma}\:{function} \\ $$$$\Gamma\left({a},{x}\right):\:\int_{\mathrm{0}} ^{{a}} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$${We}\:{Get}\: \\ $$$$\frac{{i}^{{n}+\mathrm{1}} }{\mathrm{2}.{n}^{{n}+\mathrm{1}} }\Gamma\left({t},{n}+\mathrm{1}\right)+\frac{\left(−{i}\right)^{{n}+\mathrm{1}} }{\mathrm{2}.{n}^{{n}+\mathrm{1}} }\Gamma\left({w},{n}+\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{i}}{{n}}\right)^{{n}+\mathrm{1}} \Gamma\left(−{inx},{n}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{{i}}{{n}}\right)^{{n}+\mathrm{1}} \Gamma\left({inx},{n}+\mathrm{1}\right) \\ $$$$\int{x}^{{n}} {cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{i}}{{n}}\right)^{{n}+\mathrm{1}} \left(\Gamma\left(−{inx},{n}+\mathrm{1}\right)+\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \Gamma\left({inx},{n}+\mathrm{1}\right)\right)+{c} \\ $$$$ \\ $$

Commented by Tawa11 last updated on 26/Aug/21

Thanks sir. God bless you.

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Commented by mindispower last updated on 28/Aug/21

pleasur sir

$${pleasur}\:{sir} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com