Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 153430 by mnjuly1970 last updated on 07/Sep/21

Commented by mnjuly1970 last updated on 07/Sep/21

thanks alot....

$${thanks}\:{alot}.... \\ $$

Commented by mindispower last updated on 08/Sep/21

pleasur

$${pleasur} \\ $$

Answered by mindispower last updated on 07/Sep/21

J=−(1/2)∫_0 ^∞ ((e^(−x) sin(x)ln(x))/x)dx  f(a)=∫_0 ^∞ e^(−x(1+i)) x^a dx  ∫_D e^(−z) z^a dz,D_R =[0,R]∪[Re^(iθ) ,θ∈[0,(π/4)]]∪[x(1+i),x∈[0,(R/( (√2)))]]  ∫_D_R  e^(−z) z^a =0=∫_0 ^R e^(−z) z^a dz+∫_(CR) f(z)dz+(1+i)^(a+1) ∫_(R/( (√2))) ^0 e^(−x(1+i)) x^a =0  lim_(R→∞)  ∫_C_R  f(z)dz=0⇒  ⇒(1∫_0 ^∞ e^(−x(1+i)) x^a dx=(1/((1+i)^(a+1) ))Γ(1+a))  f(a)= (2^((−a−1)/2) )e^(−((iπ(a+1))/4)) Γ(1+a))  Imf(a)=−(1/2^((1+a)/2) )sin(((a+1)/4)π)Γ(1+a)  J=−(1/2).((d imf(a))/da)∣_(a=−1)   =(1/2)(−(1/2)(ln(2)2^(−((1+a)/2)) sin(((a+1)/4)π)Γ(1+a)+(π/4)cos(((a+1)/4)π)Γ(1+a)2^(−((1+a)/2))   +Ψ(1+a)Γ(1+a)sin(((a+1)/4)π).2^(−((1+a)/2)π) )  using Ψ(1+a)=Ψ(2+a)−(1/(a+1)))  cos(((a+1)/4)π)=1+o(a+1),a→−1  sin(((a+1)/4)π)=((a+1)/4)π+o(a+1)  we get  J=−(1/2)(−(1/2)ln(2).(π/4)lim_(a→−1) (1+a)Γ(1+a)+(π/4)Γ(1+a)  (Ψ(2+a)−(1/(a+1)))Γ(1+a).(π/4)(1+a)))  =((ln(2)π)/(16))+lim_(a→−1) (π/4)(Γ(a+1)+Ψ(2+a)Γ(2+a)−((Γ(2+a))/(1+a)))    =(π/(16))ln(2)(π/4)−(π/8)lim_(a→−1) ((((1+a)Γ(1+a)−Γ(2+a))/(1+a))+Ψ(1))      Γ(2+a)=Γ(1+a).(1+a)  we get (π/8)(((ln(2))/2)+γ)=(π/8)(ln((√2))+γ)

$${J}=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}} {sin}\left({x}\right){ln}\left({x}\right)}{{x}}{dx} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}\left(\mathrm{1}+{i}\right)} {x}^{{a}} {dx} \\ $$$$\int_{{D}} {e}^{−{z}} {z}^{{a}} {dz},{D}_{{R}} =\left[\mathrm{0},{R}\right]\cup\left[{Re}^{{i}\theta} ,\theta\in\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right]\right]\cup\left[{x}\left(\mathrm{1}+{i}\right),{x}\in\left[\mathrm{0},\frac{{R}}{\:\sqrt{\mathrm{2}}}\right]\right] \\ $$$$\int_{{D}_{{R}} } {e}^{−{z}} {z}^{{a}} =\mathrm{0}=\int_{\mathrm{0}} ^{{R}} {e}^{−{z}} {z}^{{a}} {dz}+\int_{{CR}} {f}\left({z}\right){dz}+\left(\mathrm{1}+{i}\right)^{{a}+\mathrm{1}} \int_{\frac{{R}}{\:\sqrt{\mathrm{2}}}} ^{\mathrm{0}} {e}^{−{x}\left(\mathrm{1}+{i}\right)} {x}^{{a}} =\mathrm{0} \\ $$$$\underset{{R}\rightarrow\infty} {\mathrm{lim}}\:\int_{{C}_{{R}} } {f}\left({z}\right){dz}=\mathrm{0}\Rightarrow \\ $$$$\Rightarrow\left(\mathrm{1}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}\left(\mathrm{1}+{i}\right)} {x}^{{a}} {dx}=\frac{\mathrm{1}}{\left(\mathrm{1}+{i}\right)^{{a}+\mathrm{1}} }\Gamma\left(\mathrm{1}+{a}\right)\right) \\ $$$$\left.{f}\left({a}\right)=\:\left(\mathrm{2}^{\frac{−{a}−\mathrm{1}}{\mathrm{2}}} \right){e}^{−\frac{{i}\pi\left({a}+\mathrm{1}\right)}{\mathrm{4}}} \Gamma\left(\mathrm{1}+{a}\right)\right) \\ $$$${Imf}\left({a}\right)=−\frac{\mathrm{1}}{\mathrm{2}^{\frac{\mathrm{1}+{a}}{\mathrm{2}}} }{sin}\left(\frac{{a}+\mathrm{1}}{\mathrm{4}}\pi\right)\Gamma\left(\mathrm{1}+{a}\right) \\ $$$${J}=−\frac{\mathrm{1}}{\mathrm{2}}.\frac{{d}\:{imf}\left({a}\right)}{{da}}\mid_{{a}=−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\left(\mathrm{2}\right)\mathrm{2}^{−\frac{\mathrm{1}+{a}}{\mathrm{2}}} {sin}\left(\frac{{a}+\mathrm{1}}{\mathrm{4}}\pi\right)\Gamma\left(\mathrm{1}+{a}\right)+\frac{\pi}{\mathrm{4}}{cos}\left(\frac{{a}+\mathrm{1}}{\mathrm{4}}\pi\right)\Gamma\left(\mathrm{1}+{a}\right)\mathrm{2}^{−\frac{\mathrm{1}+{a}}{\mathrm{2}}} \right.\right. \\ $$$$\left.+\Psi\left(\mathrm{1}+{a}\right)\Gamma\left(\mathrm{1}+{a}\right){sin}\left(\frac{{a}+\mathrm{1}}{\mathrm{4}}\pi\right).\mathrm{2}^{−\frac{\mathrm{1}+{a}}{\mathrm{2}}\pi} \right) \\ $$$$\left.{using}\:\Psi\left(\mathrm{1}+{a}\right)=\Psi\left(\mathrm{2}+{a}\right)−\frac{\mathrm{1}}{{a}+\mathrm{1}}\right) \\ $$$${cos}\left(\frac{{a}+\mathrm{1}}{\mathrm{4}}\pi\right)=\mathrm{1}+{o}\left({a}+\mathrm{1}\right),{a}\rightarrow−\mathrm{1} \\ $$$${sin}\left(\frac{{a}+\mathrm{1}}{\mathrm{4}}\pi\right)=\frac{{a}+\mathrm{1}}{\mathrm{4}}\pi+{o}\left({a}+\mathrm{1}\right) \\ $$$${we}\:{get} \\ $$$${J}=−\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right).\frac{\pi}{\mathrm{4}}\underset{{a}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\mathrm{1}+{a}\right)\Gamma\left(\mathrm{1}+{a}\right)+\frac{\pi}{\mathrm{4}}\Gamma\left(\mathrm{1}+{a}\right)\right. \\ $$$$\left.\left(\left.\Psi\left(\mathrm{2}+{a}\right)−\frac{\mathrm{1}}{{a}+\mathrm{1}}\right)\Gamma\left(\mathrm{1}+{a}\right).\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+{a}\right)\right)\right) \\ $$$$=\frac{{ln}\left(\mathrm{2}\right)\pi}{\mathrm{16}}+\underset{{a}\rightarrow−\mathrm{1}} {\mathrm{lim}}\frac{\pi}{\mathrm{4}}\left(\Gamma\left({a}+\mathrm{1}\right)+\Psi\left(\mathrm{2}+{a}\right)\Gamma\left(\mathrm{2}+{a}\right)−\frac{\Gamma\left(\mathrm{2}+{a}\right)}{\mathrm{1}+{a}}\right) \\ $$$$ \\ $$$$=\frac{\pi}{\mathrm{16}}{ln}\left(\mathrm{2}\right)\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{8}}\underset{{a}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\frac{\left(\mathrm{1}+{a}\right)\Gamma\left(\mathrm{1}+{a}\right)−\Gamma\left(\mathrm{2}+{a}\right)}{\mathrm{1}+{a}}+\Psi\left(\mathrm{1}\right)\right) \\ $$$$ \\ $$$$ \\ $$$$\Gamma\left(\mathrm{2}+{a}\right)=\Gamma\left(\mathrm{1}+{a}\right).\left(\mathrm{1}+{a}\right) \\ $$$${we}\:{get}\:\frac{\pi}{\mathrm{8}}\left(\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}+\gamma\right)=\frac{\pi}{\mathrm{8}}\left({ln}\left(\sqrt{\mathrm{2}}\right)+\gamma\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by puissant last updated on 07/Sep/21

Sir mindispower you are a boss..

$${Sir}\:{mindispower}\:{you}\:{are}\:{a}\:{boss}.. \\ $$

Commented by mnjuly1970 last updated on 08/Sep/21

thank you so much mr power

$${thank}\:{you}\:{so}\:{much}\:{mr}\:{power} \\ $$

Commented by mindispower last updated on 08/Sep/21

withe pleasur have a nice day

$${withe}\:{pleasur}\:{have}\:{a}\:{nice}\:{day} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com