Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 154647 by mathdanisur last updated on 20/Sep/21

f : Q → Q  f(x + f(y)) = y + f(x)  ∀ x;y ∈ Q

$$\mathrm{f}\::\:\mathrm{Q}\:\rightarrow\:\mathrm{Q} \\ $$$$\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{f}\left(\mathrm{y}\right)\right)\:=\:\mathrm{y}\:+\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\forall\:\mathrm{x};\mathrm{y}\:\in\:\mathrm{Q} \\ $$

Answered by TheHoneyCat last updated on 20/Sep/21

I demote by f^n  : f○...○f n times  I wont precise it, but when a value (x,y,z...) is not defined it means it can be any element of Q  let I be the identity function  I am assuming that Q here stands for Q the set of rationnals  but note that this proof works on any group were −2,−1,0,1,2 are all distinct  I am also assuming that the question is:  “Find all f such that [your proprety]”    evaluating for x=0 we get:  f^2 (y)=y+f(0)  applying f over that equality we get:  f^3 (y)=f(y+f(0))=0+f(y)  hence: f^3 =f      (1)    f(x+f(y))=y+f(x)  f(−f(y)+f(y))=y+f(f(y))  i.e. f(0)−y=f^2 (y)  so f^3 (y)=f(−y+f(0))=f(−y)  i.e. f^3 =f○(−I)  hence f=f○(−I) (2)    y+f(x)=y+f(−x)=f(−x+f(y))=f(x+f(y))  f(0)=f(2f(y))  f(2f(y))=y+f(y)=f(0)  so f^2 =f (3)    f(x+f(y))=y+f(x)  f^2 (y)=f(y)+f(0) so f(0)=0  so f(y)=−y  but then y!=0 ⇒ f(−y)!=f(y)  this contradicts (2)     therefore there is no such function_■

$$\mathrm{I}\:\mathrm{demote}\:\mathrm{by}\:{f}^{{n}} \::\:{f}\circ...\circ{f}\:{n}\:\mathrm{times} \\ $$$$\mathrm{I}\:\mathrm{wont}\:\mathrm{precise}\:\mathrm{it},\:\mathrm{but}\:\mathrm{when}\:\mathrm{a}\:\mathrm{value}\:\left({x},{y},{z}...\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{it}\:\mathrm{means}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{any}\:\mathrm{element}\:\mathrm{of}\:\mathbb{Q} \\ $$$$\mathrm{let}\:\mathbb{I}\:\mathrm{be}\:\mathrm{the}\:\mathrm{identity}\:\mathrm{function} \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{assuming}\:\mathrm{that}\:\mathrm{Q}\:\mathrm{here}\:\mathrm{stands}\:\mathrm{for}\:\mathbb{Q}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{rationnals} \\ $$$$\mathrm{but}\:\mathrm{note}\:\mathrm{that}\:\mathrm{this}\:\mathrm{proof}\:\mathrm{works}\:\mathrm{on}\:\mathrm{any}\:\mathrm{group}\:\mathrm{were}\:−\mathrm{2},−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2}\:\mathrm{are}\:\mathrm{all}\:\mathrm{distinct} \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{also}\:\mathrm{assuming}\:\mathrm{that}\:\mathrm{the}\:\mathrm{question}\:\mathrm{is}: \\ $$$$``\mathrm{Find}\:\mathrm{all}\:{f}\:\mathrm{such}\:\mathrm{that}\:\left[{your}\:{proprety}\right]'' \\ $$$$ \\ $$$$\mathrm{evaluating}\:\mathrm{for}\:{x}=\mathrm{0}\:\mathrm{we}\:\mathrm{get}: \\ $$$${f}^{\mathrm{2}} \left({y}\right)={y}+{f}\left(\mathrm{0}\right) \\ $$$$\mathrm{applying}\:{f}\:\mathrm{over}\:\mathrm{that}\:\mathrm{equality}\:\mathrm{we}\:\mathrm{get}: \\ $$$${f}^{\mathrm{3}} \left({y}\right)={f}\left({y}+{f}\left(\mathrm{0}\right)\right)=\mathrm{0}+{f}\left({y}\right) \\ $$$$\mathrm{hence}:\:{f}^{\mathrm{3}} ={f}\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$${f}\left({x}+{f}\left({y}\right)\right)={y}+{f}\left({x}\right) \\ $$$${f}\left(−{f}\left({y}\right)+{f}\left({y}\right)\right)={y}+{f}\left({f}\left({y}\right)\right) \\ $$$$\mathrm{i}.\mathrm{e}.\:{f}\left(\mathrm{0}\right)−{y}={f}^{\mathrm{2}} \left({y}\right) \\ $$$$\mathrm{so}\:{f}^{\mathrm{3}} \left({y}\right)={f}\left(−{y}+{f}\left(\mathrm{0}\right)\right)={f}\left(−{y}\right) \\ $$$$\mathrm{i}.\mathrm{e}.\:{f}^{\mathrm{3}} ={f}\circ\left(−\mathbb{I}\right) \\ $$$$\mathrm{hence}\:{f}={f}\circ\left(−\mathbb{I}\right)\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$${y}+{f}\left({x}\right)={y}+{f}\left(−{x}\right)={f}\left(−{x}+{f}\left({y}\right)\right)={f}\left({x}+{f}\left({y}\right)\right) \\ $$$${f}\left(\mathrm{0}\right)={f}\left(\mathrm{2}{f}\left({y}\right)\right) \\ $$$${f}\left(\mathrm{2}{f}\left({y}\right)\right)={y}+{f}\left({y}\right)={f}\left(\mathrm{0}\right) \\ $$$$\mathrm{so}\:{f}^{\mathrm{2}} ={f}\:\left(\mathrm{3}\right) \\ $$$$ \\ $$$${f}\left({x}+{f}\left({y}\right)\right)={y}+{f}\left({x}\right) \\ $$$${f}^{\mathrm{2}} \left({y}\right)={f}\left({y}\right)+{f}\left(\mathrm{0}\right)\:{so}\:{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{so}\:{f}\left({y}\right)=−{y} \\ $$$$\mathrm{but}\:\mathrm{then}\:{y}!=\mathrm{0}\:\Rightarrow\:{f}\left(−{y}\right)!={f}\left({y}\right) \\ $$$$\mathrm{this}\:\mathrm{contradicts}\:\left(\mathrm{2}\right)\: \\ $$$$ \\ $$$$\mathrm{therefore}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\mathrm{function}_{\blacksquare} \\ $$$$\: \\ $$

Commented by mathdanisur last updated on 20/Sep/21

Perfect solution Ser, thanks

$$\mathrm{Perfect}\:\mathrm{solution}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com