Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 154677 by mathdanisur last updated on 20/Sep/21

Solve for real numbers:  ((x^9  - 256x^3  - 791)/(84x^3 )) = ((4x + 7))^(1/3)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{x}^{\mathrm{9}} \:-\:\mathrm{256x}^{\mathrm{3}} \:-\:\mathrm{791}}{\mathrm{84x}^{\mathrm{3}} }\:=\:\sqrt[{\mathrm{3}}]{\mathrm{4x}\:+\:\mathrm{7}} \\ $$

Commented by MJS_new last updated on 20/Sep/21

((x^9 −256x−791)/(84x^3 ))=((4x+7))^(1/3)   we can solve it...  let x=((4x+7))^(1/3)  ⇒ x^3 −4x−7=0 (1)  ⇒  ((x^9 −256x−791)/(84x^3 ))=x  ⇔  x^9 −84x^4 −256x−791=0 (2)  (x^3 −4x−7)(x^6 +4x^4 +7x^3 +16x^2 −28x+113)=0  ⇒  the solutions of (1) also solve (2)  x∈R ⇒ x=(((7/2)−((√(3201))/(18))))^(1/3) +(((7/2)+((√(3201))/(18))))^(1/3)

$$\frac{{x}^{\mathrm{9}} −\mathrm{256}{x}−\mathrm{791}}{\mathrm{84}{x}^{\mathrm{3}} }=\sqrt[{\mathrm{3}}]{\mathrm{4}{x}+\mathrm{7}} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{it}... \\ $$$$\mathrm{let}\:{x}=\sqrt[{\mathrm{3}}]{\mathrm{4}{x}+\mathrm{7}}\:\Rightarrow\:{x}^{\mathrm{3}} −\mathrm{4}{x}−\mathrm{7}=\mathrm{0}\:\left(\mathrm{1}\right) \\ $$$$\Rightarrow \\ $$$$\frac{{x}^{\mathrm{9}} −\mathrm{256}{x}−\mathrm{791}}{\mathrm{84}{x}^{\mathrm{3}} }={x} \\ $$$$\Leftrightarrow \\ $$$${x}^{\mathrm{9}} −\mathrm{84}{x}^{\mathrm{4}} −\mathrm{256}{x}−\mathrm{791}=\mathrm{0}\:\left(\mathrm{2}\right) \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{4}{x}−\mathrm{7}\right)\left({x}^{\mathrm{6}} +\mathrm{4}{x}^{\mathrm{4}} +\mathrm{7}{x}^{\mathrm{3}} +\mathrm{16}{x}^{\mathrm{2}} −\mathrm{28}{x}+\mathrm{113}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\left(\mathrm{1}\right)\:\mathrm{also}\:\mathrm{solve}\:\left(\mathrm{2}\right) \\ $$$${x}\in\mathbb{R}\:\Rightarrow\:{x}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{7}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3201}}}{\mathrm{18}}}+\sqrt[{\mathrm{3}}]{\frac{\mathrm{7}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3201}}}{\mathrm{18}}} \\ $$

Commented by mathdanisur last updated on 20/Sep/21

There was a typo. Thank you for your attention Ser.  The correct is ...256x, not 256x^3 .  Sorry for my mistake Ser.

$$\mathrm{There}\:\mathrm{was}\:\mathrm{a}\:\mathrm{typo}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{your}\:\mathrm{attention}\:\boldsymbol{\mathrm{S}}\mathrm{er}. \\ $$$$\mathrm{The}\:\mathrm{correct}\:\mathrm{is}\:...\mathrm{256x},\:\mathrm{not}\:\mathrm{256x}^{\mathrm{3}} . \\ $$$$\mathrm{Sorry}\:\mathrm{for}\:\mathrm{my}\:\mathrm{mistake}\:\boldsymbol{\mathrm{S}}\mathrm{er}. \\ $$

Commented by MJS_new last updated on 20/Sep/21

only approximation is possible  I get  x_1 ≈−2.05382774  x_2 ≈−1.30927779  x_3 ≈2.82876252

$$\mathrm{only}\:\mathrm{approximation}\:\mathrm{is}\:\mathrm{possible} \\ $$$$\mathrm{I}\:\mathrm{get} \\ $$$${x}_{\mathrm{1}} \approx−\mathrm{2}.\mathrm{05382774} \\ $$$${x}_{\mathrm{2}} \approx−\mathrm{1}.\mathrm{30927779} \\ $$$${x}_{\mathrm{3}} \approx\mathrm{2}.\mathrm{82876252} \\ $$

Commented by mathdanisur last updated on 20/Sep/21

creativ solution, thank you Ser

$$\mathrm{creativ}\:\mathrm{solution},\:\mathrm{thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Commented by mr W last updated on 20/Sep/21

it′s each time a wonder to me how  you get  (x^3 −4x−7)(x^6 +4x^4 +7x^3 +16x^2 −28x+113)=0  from  x^9 −84x^4 −256x−791=0.  great!

$${it}'{s}\:{each}\:{time}\:{a}\:{wonder}\:{to}\:{me}\:{how} \\ $$$${you}\:{get} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{4}{x}−\mathrm{7}\right)\left({x}^{\mathrm{6}} +\mathrm{4}{x}^{\mathrm{4}} +\mathrm{7}{x}^{\mathrm{3}} +\mathrm{16}{x}^{\mathrm{2}} −\mathrm{28}{x}+\mathrm{113}\right)=\mathrm{0} \\ $$$${from} \\ $$$${x}^{\mathrm{9}} −\mathrm{84}{x}^{\mathrm{4}} −\mathrm{256}{x}−\mathrm{791}=\mathrm{0}. \\ $$$${great}! \\ $$

Commented by mathdanisur last updated on 20/Sep/21

Thank you so much Ser

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Commented by MJS_new last updated on 20/Sep/21

this time I first plotted both sides of the  given equation and it looked as if the only  solution was on the line y=x. then I tried to  verify this and it was easy to divide   (x^9 −84x^4 −256x−791)/(x^3 −4x−7)  I see no chance to get the exact result  without this very lucky coincidence...

$$\mathrm{this}\:\mathrm{time}\:\mathrm{I}\:\mathrm{first}\:\mathrm{plotted}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{given}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{it}\:\mathrm{looked}\:\mathrm{as}\:\mathrm{if}\:\mathrm{the}\:\mathrm{only} \\ $$$$\mathrm{solution}\:\mathrm{was}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\:{y}={x}.\:\mathrm{then}\:\mathrm{I}\:\mathrm{tried}\:\mathrm{to} \\ $$$$\mathrm{verify}\:\mathrm{this}\:\mathrm{and}\:\mathrm{it}\:\mathrm{was}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{divide}\: \\ $$$$\left({x}^{\mathrm{9}} −\mathrm{84}{x}^{\mathrm{4}} −\mathrm{256}{x}−\mathrm{791}\right)/\left({x}^{\mathrm{3}} −\mathrm{4}{x}−\mathrm{7}\right) \\ $$$$\mathrm{I}\:\mathrm{see}\:\mathrm{no}\:\mathrm{chance}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{result} \\ $$$$\mathrm{without}\:\mathrm{this}\:\mathrm{very}\:\mathrm{lucky}\:\mathrm{coincidence}... \\ $$

Commented by MJS_new last updated on 21/Sep/21

we can build similar questions this way:  ((x^9 −a^4 x−(a^3 +b^2 )b)/(3abx^3 ))=((ax+b))^(1/3)   it′s more a magic trick than serious math  let ((ax+b))^(1/3) =x ⇔ x^3 −ax−b=0 (1)  ⇒  ((x^9 −a^4 x−(a^3 +b^2 )b)/(3abx^3 ))=x  x^9 −4abx^4 −a^4 x−(a^3 +b^2 )b=0 (2)  (x^3 −ax−b)(x^6 +ax^4 +bx^3 +a^2 x^2 −abx+a^3 +b^2 )=0  obviously the real solution(s) of (1) also  solve (2).

$$\mathrm{we}\:\mathrm{can}\:\mathrm{build}\:\mathrm{similar}\:\mathrm{questions}\:\mathrm{this}\:\mathrm{way}: \\ $$$$\frac{{x}^{\mathrm{9}} −{a}^{\mathrm{4}} {x}−\left({a}^{\mathrm{3}} +{b}^{\mathrm{2}} \right){b}}{\mathrm{3}{abx}^{\mathrm{3}} }=\sqrt[{\mathrm{3}}]{{ax}+{b}} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{more}\:\mathrm{a}\:\mathrm{magic}\:\mathrm{trick}\:\mathrm{than}\:\mathrm{serious}\:\mathrm{math} \\ $$$$\mathrm{let}\:\sqrt[{\mathrm{3}}]{{ax}+{b}}={x}\:\Leftrightarrow\:{x}^{\mathrm{3}} −{ax}−{b}=\mathrm{0}\:\left(\mathrm{1}\right) \\ $$$$\Rightarrow \\ $$$$\frac{{x}^{\mathrm{9}} −{a}^{\mathrm{4}} {x}−\left({a}^{\mathrm{3}} +{b}^{\mathrm{2}} \right){b}}{\mathrm{3}{abx}^{\mathrm{3}} }={x} \\ $$$${x}^{\mathrm{9}} −\mathrm{4}{abx}^{\mathrm{4}} −{a}^{\mathrm{4}} {x}−\left({a}^{\mathrm{3}} +{b}^{\mathrm{2}} \right){b}=\mathrm{0}\:\left(\mathrm{2}\right) \\ $$$$\left({x}^{\mathrm{3}} −{ax}−{b}\right)\left({x}^{\mathrm{6}} +{ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{a}^{\mathrm{2}} {x}^{\mathrm{2}} −{abx}+{a}^{\mathrm{3}} +{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{obviously}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\left(\mathrm{s}\right)\:\mathrm{of}\:\left(\mathrm{1}\right)\:\mathrm{also} \\ $$$$\mathrm{solve}\:\left(\mathrm{2}\right). \\ $$

Commented by MJS_new last updated on 21/Sep/21

question 154303 works exactly the same way

$$\mathrm{question}\:\mathrm{154303}\:\mathrm{works}\:\mathrm{exactly}\:\mathrm{the}\:\mathrm{same}\:\mathrm{way} \\ $$

Commented by mathdanisur last updated on 21/Sep/21

Very nice Ser, thank you

$$\mathrm{Very}\:\mathrm{nice}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you} \\ $$

Answered by imjagoll last updated on 21/Sep/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com