Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 155572 by peter frank last updated on 02/Oct/21

Find Z^4 =1.  Hence show that 1+w+w^2 +w^3 =0

$$\mathrm{Find}\:\mathrm{Z}^{\mathrm{4}} =\mathrm{1}. \\ $$$$\mathrm{Hence}\:\mathrm{show}\:\mathrm{that}\:\mathrm{1}+\mathrm{w}+\mathrm{w}^{\mathrm{2}} +\mathrm{w}^{\mathrm{3}} =\mathrm{0} \\ $$

Answered by puissant last updated on 02/Oct/21

z^4 =1  ⇒  z=e^(i((2kπ)/4))  ;  k∈[∣0;3∣]..   → k=0 ⇒ z=1..  → k=1 ⇒ z=e^(i(π/2)) = i..  → k=2 ⇒ z=e^(i((4π)/4)) = e^(iπ) =−1..  → k=3 ⇒z=e^(i((3π)/2)) = −i..           ∵ z ∈ {−1 ; −i ; i ; 1 }..       ★... 1+w+w^2 +w^3 =((1−w^4 )/(1−w))= ((w^4 −1)/(w−1))  w is a solution, we have w^4 = 1  ⇒ w^4 −1=0   ⇒((w^4 −1)/(w−1))=0 ⇒ 1+w+w^2 +w^3 =0..

$${z}^{\mathrm{4}} =\mathrm{1}\:\:\Rightarrow\:\:{z}={e}^{{i}\frac{\mathrm{2}{k}\pi}{\mathrm{4}}} \:;\:\:{k}\in\left[\mid\mathrm{0};\mathrm{3}\mid\right].. \\ $$$$\:\rightarrow\:{k}=\mathrm{0}\:\Rightarrow\:{z}=\mathrm{1}.. \\ $$$$\rightarrow\:{k}=\mathrm{1}\:\Rightarrow\:{z}={e}^{{i}\frac{\pi}{\mathrm{2}}} =\:{i}.. \\ $$$$\rightarrow\:{k}=\mathrm{2}\:\Rightarrow\:{z}={e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{4}}} =\:{e}^{{i}\pi} =−\mathrm{1}.. \\ $$$$\rightarrow\:{k}=\mathrm{3}\:\Rightarrow{z}={e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{2}}} =\:−{i}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\because\:{z}\:\in\:\left\{−\mathrm{1}\:;\:−{i}\:;\:{i}\:;\:\mathrm{1}\:\right\}.. \\ $$$$ \\ $$$$\:\:\:\bigstar...\:\mathrm{1}+{w}+{w}^{\mathrm{2}} +{w}^{\mathrm{3}} =\frac{\mathrm{1}−{w}^{\mathrm{4}} }{\mathrm{1}−{w}}=\:\frac{{w}^{\mathrm{4}} −\mathrm{1}}{{w}−\mathrm{1}} \\ $$$${w}\:{is}\:{a}\:{solution},\:{we}\:{have}\:{w}^{\mathrm{4}} =\:\mathrm{1} \\ $$$$\Rightarrow\:{w}^{\mathrm{4}} −\mathrm{1}=\mathrm{0}\: \\ $$$$\Rightarrow\frac{{w}^{\mathrm{4}} −\mathrm{1}}{{w}−\mathrm{1}}=\mathrm{0}\:\Rightarrow\:\mathrm{1}+{w}+{w}^{\mathrm{2}} +{w}^{\mathrm{3}} =\mathrm{0}.. \\ $$

Commented by peter frank last updated on 02/Oct/21

great sir .thanks

$$\mathrm{great}\:\mathrm{sir}\:.\mathrm{thanks} \\ $$

Answered by Rasheed.Sindhi last updated on 02/Oct/21

z^4 −1=0  (z−1)(z+1)(z^2 +1)=0  z=1,z=−1,z=±i  ω=i (say)  ω^2 =i^2 =−1  ω^3 =i^3 =i^2 .i=−i  ω^4 =i^4 =i^2 .i^2 =−1.−1=1  1+ω+ω^2 +ω^3 =1+i+(−1)+(−i)=0

$$\mathrm{z}^{\mathrm{4}} −\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{z}−\mathrm{1}\right)\left(\mathrm{z}+\mathrm{1}\right)\left(\mathrm{z}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{z}=\mathrm{1},\mathrm{z}=−\mathrm{1},\mathrm{z}=\pm{i} \\ $$$$\omega={i}\:\left({say}\right) \\ $$$$\omega^{\mathrm{2}} ={i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\omega^{\mathrm{3}} ={i}^{\mathrm{3}} ={i}^{\mathrm{2}} .{i}=−{i} \\ $$$$\omega^{\mathrm{4}} ={i}^{\mathrm{4}} ={i}^{\mathrm{2}} .{i}^{\mathrm{2}} =−\mathrm{1}.−\mathrm{1}=\mathrm{1} \\ $$$$\mathrm{1}+\omega+\omega^{\mathrm{2}} +\omega^{\mathrm{3}} =\mathrm{1}+{i}+\left(−\mathrm{1}\right)+\left(−{i}\right)=\mathrm{0} \\ $$

Commented by peter frank last updated on 02/Oct/21

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com