Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 157749 by naka3546 last updated on 27/Oct/21

a^2 + b^2  + c^2  + d^2  = 4  a,b,c,d ∈ R  max{a^3  + b^3  + c^3  + d^3 }  =  ?

$${a}^{\mathrm{2}} +\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:+\:{d}^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$${a},{b},{c},{d}\:\in\:\mathbb{R} \\ $$$${max}\left\{{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} \:+\:{d}^{\mathrm{3}} \right\}\:\:=\:\:? \\ $$

Commented by naka3546 last updated on 28/Oct/21

Which  inequality  is  used  for  solving  it ?

$$\mathrm{W}{hich}\:\:{inequality}\:\:{is}\:\:{used}\:\:{for}\:\:{solving}\:\:{it}\:? \\ $$

Commented by mr W last updated on 27/Oct/21

max=8

$${max}=\mathrm{8} \\ $$

Commented by naka3546 last updated on 27/Oct/21

Show  your  workings, please, sir.

$${Show}\:\:{your}\:\:{workings},\:{please},\:{sir}. \\ $$

Commented by naka3546 last updated on 27/Oct/21

Thank  you, sir.

$${Thank}\:\:{you},\:{sir}. \\ $$

Commented by mr W last updated on 27/Oct/21

if x_1 +x_2 +x_3 +...+x_n =s with x_i ≥0,  then for p>1   (x_1 ^p +x_2 ^p +x_3 ^p +...+x_n ^p )_(min) =n((s/n))^p =(s^p /n^(p−1) )   (x_1 ^p +x_2 ^p +x_3 ^p +...+x_n ^p )_(max) =s^p

$${if}\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +...+{x}_{{n}} ={s}\:{with}\:{x}_{{i}} \geqslant\mathrm{0}, \\ $$$${then}\:{for}\:{p}>\mathrm{1} \\ $$$$\:\left({x}_{\mathrm{1}} ^{{p}} +{x}_{\mathrm{2}} ^{{p}} +{x}_{\mathrm{3}} ^{{p}} +...+{x}_{{n}} ^{{p}} \right)_{{min}} ={n}\left(\frac{{s}}{{n}}\right)^{{p}} =\frac{{s}^{{p}} }{{n}^{{p}−\mathrm{1}} } \\ $$$$\:\left({x}_{\mathrm{1}} ^{{p}} +{x}_{\mathrm{2}} ^{{p}} +{x}_{\mathrm{3}} ^{{p}} +...+{x}_{{n}} ^{{p}} \right)_{{max}} ={s}^{{p}} \\ $$

Commented by mr W last updated on 03/Aug/23

i don′t know if i′m using a known  inequality. actually i just use my  brain and logic.  let′s look at f(x)=x^p  with p>1.

$${i}\:{don}'{t}\:{know}\:{if}\:{i}'{m}\:{using}\:{a}\:{known} \\ $$$${inequality}.\:{actually}\:{i}\:{just}\:{use}\:{my} \\ $$$${brain}\:{and}\:{logic}. \\ $$$${let}'{s}\:{look}\:{at}\:{f}\left({x}\right)={x}^{{p}} \:{with}\:{p}>\mathrm{1}.\: \\ $$

Commented by mr W last updated on 28/Oct/21

Commented by mr W last updated on 03/Aug/23

we can see (certainly it′s also easy  to prove):  f(x_1 +x_2 )≥f(x_1 )+f(x_2 ), i.e.  (x_1 +x_2 )^p ≥x_1 ^p +x_2 ^p   (equality holds when x_2 =0)  applying this we get  (x_1 +x_2 +x_3 )^p ≥(x_1 +x_2 )^p +x_3 ^p ≥x_1 ^p +x_2 ^p +x_3 ^p   and ...  (x_1 +x_2 +x_3 +...+x_n )^p ≥x_1 ^p +x_2 ^p +x_3 ^p +...+x_n ^p   ⇒x_1 ^p +x_2 ^p +x_3 ^p +...+x_n ^p ≤(x_1 +x_2 +x_3 +...+x_n )^p =s^p   i.e.  (x_1 ^p +x_2 ^p +x_3 ^p +...+x_n ^p )_(max) =s^p

$${we}\:{can}\:{see}\:\left({certainly}\:{it}'{s}\:{also}\:{easy}\right. \\ $$$$\left.{to}\:{prove}\right): \\ $$$${f}\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)\geqslant{f}\left({x}_{\mathrm{1}} \right)+{f}\left({x}_{\mathrm{2}} \right),\:{i}.{e}. \\ $$$$\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)^{{p}} \geqslant{x}_{\mathrm{1}} ^{{p}} +{x}_{\mathrm{2}} ^{{p}} \\ $$$$\left({equality}\:{holds}\:{when}\:{x}_{\mathrm{2}} =\mathrm{0}\right) \\ $$$${applying}\:{this}\:{we}\:{get} \\ $$$$\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} \right)^{{p}} \geqslant\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)^{{p}} +{x}_{\mathrm{3}} ^{{p}} \geqslant{x}_{\mathrm{1}} ^{{p}} +{x}_{\mathrm{2}} ^{{p}} +{x}_{\mathrm{3}} ^{{p}} \\ $$$${and}\:... \\ $$$$\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +...+{x}_{{n}} \right)^{{p}} \geqslant{x}_{\mathrm{1}} ^{{p}} +{x}_{\mathrm{2}} ^{{p}} +{x}_{\mathrm{3}} ^{{p}} +...+{x}_{{n}} ^{{p}} \\ $$$$\Rightarrow{x}_{\mathrm{1}} ^{{p}} +{x}_{\mathrm{2}} ^{{p}} +{x}_{\mathrm{3}} ^{{p}} +...+{x}_{{n}} ^{{p}} \leqslant\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +...+{x}_{{n}} \right)^{{p}} ={s}^{{p}} \\ $$$${i}.{e}. \\ $$$$\left({x}_{\mathrm{1}} ^{{p}} +{x}_{\mathrm{2}} ^{{p}} +{x}_{\mathrm{3}} ^{{p}} +...+{x}_{{n}} ^{{p}} \right)_{{max}} ={s}^{{p}} \\ $$

Commented by mr W last updated on 28/Oct/21

back to the question, we have  x_1 =a^2 , x_2 =b^2 , x_3 =c^2 , x_4 =d^2   s=a^2 +b^2 +c^2 +d^2 =x_1 +x_2 +x_3 +x_4 =4  p=(3/2)>1  a^3 +b^3 +c^3 +d^3 =x_1 ^p +x_2 ^p +x_3 ^p +x_4 ^p ≤4^p =4^(3/2) =8  ⇒(a^3 +b^3 +c^3 +d^3 )_(max) =8

$${back}\:{to}\:{the}\:{question},\:{we}\:{have} \\ $$$${x}_{\mathrm{1}} ={a}^{\mathrm{2}} ,\:{x}_{\mathrm{2}} ={b}^{\mathrm{2}} ,\:{x}_{\mathrm{3}} ={c}^{\mathrm{2}} ,\:{x}_{\mathrm{4}} ={d}^{\mathrm{2}} \\ $$$${s}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} ={x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +{x}_{\mathrm{4}} =\mathrm{4} \\ $$$${p}=\frac{\mathrm{3}}{\mathrm{2}}>\mathrm{1} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +{d}^{\mathrm{3}} ={x}_{\mathrm{1}} ^{{p}} +{x}_{\mathrm{2}} ^{{p}} +{x}_{\mathrm{3}} ^{{p}} +{x}_{\mathrm{4}} ^{{p}} \leqslant\mathrm{4}^{{p}} =\mathrm{4}^{\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{8} \\ $$$$\Rightarrow\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +{d}^{\mathrm{3}} \right)_{{max}} =\mathrm{8} \\ $$

Commented by naka3546 last updated on 29/Oct/21

Thank  you  so  much ,  sir.

$${Thank}\:\:{you}\:\:{so}\:\:{much}\:,\:\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com