Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 15828 by Tinkutara last updated on 14/Jun/17

In a ΔABC, let M_a , M_b  and M_c  denote  the length of medians,  s = ((M_a  + M_b  + M_c )/2)  and Δ = ar(ΔABC).  Prove that  Δ = (4/3)(√(s(s − M_a )(s − M_b )(s − M_c )))

$$\mathrm{In}\:\mathrm{a}\:\Delta{ABC},\:\mathrm{let}\:{M}_{{a}} ,\:{M}_{{b}} \:\mathrm{and}\:{M}_{{c}} \:\mathrm{denote} \\ $$$$\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{medians}, \\ $$$${s}\:=\:\frac{{M}_{{a}} \:+\:{M}_{{b}} \:+\:{M}_{{c}} }{\mathrm{2}}\:\:\mathrm{and}\:\Delta\:=\:\mathrm{ar}\left(\Delta{ABC}\right). \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\Delta\:=\:\frac{\mathrm{4}}{\mathrm{3}}\sqrt{{s}\left({s}\:−\:{M}_{{a}} \right)\left({s}\:−\:{M}_{{b}} \right)\left({s}\:−\:{M}_{{c}} \right)} \\ $$

Answered by ajfour last updated on 14/Jun/17

Commented by ajfour last updated on 14/Jun/17

M_a =AP    M_b =BQ   M_c =CR  A triangle with sides equal to    (2/3)M_a , (2/3)M_b , (2/3)M_c   is for  example ΔGBL. (All six triangles  ΔAGN, ΔBGN, ΔBGL, ΔCGL,  ΔCGM, and ΔAGM  of    hexagon ANBLCM have these  lengths as their sides.      s=((M_a +M_b +M_c )/2)    let  l=(1/2)((2/3)M_a +(2/3)M_b +(2/3)M_c )   then  l= (2/3)s             Area of any such Δ of the hexagon   =(√(l(l−(2/3)M_a )(l−(2/3)M_b )(l−(2/3)M_c )))    as  l=(2/3)s  we have   (1/6)(hexagon area)    = ((2/3))^2 (√(s(s−M_a )(s−M_b )(s−M_c )))   hexagon area =2(area of ΔABC)       =2Δ   ,    therefore   (1/6)(2Δ)=(4/9)(√(s(s−M_a )(s−M_b )(s−M_c )))    Δ=(4/3)(√(s(s−M_a )(s−M_b (s−M_c ))) .

$${M}_{{a}} ={AP}\:\:\:\:{M}_{{b}} ={BQ}\:\:\:{M}_{{c}} ={CR} \\ $$$${A}\:{triangle}\:{with}\:{sides}\:{equal}\:{to} \\ $$$$\:\:\frac{\mathrm{2}}{\mathrm{3}}{M}_{{a}} ,\:\frac{\mathrm{2}}{\mathrm{3}}{M}_{{b}} ,\:\frac{\mathrm{2}}{\mathrm{3}}{M}_{{c}} \:\:{is}\:{for} \\ $$$${example}\:\Delta{GBL}.\:\left({All}\:{six}\:{triangles}\right. \\ $$$$\Delta{AGN},\:\Delta{BGN},\:\Delta{BGL},\:\Delta{CGL}, \\ $$$$\Delta{CGM},\:{and}\:\Delta{AGM}\:\:{of}\: \\ $$$$\:{hexagon}\:{ANBLCM}\:{have}\:{these} \\ $$$${lengths}\:{as}\:{their}\:{sides}. \\ $$$$\:\:\:\:{s}=\frac{{M}_{{a}} +{M}_{{b}} +{M}_{{c}} }{\mathrm{2}} \\ $$$$\:\:{let}\:\:{l}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}}{\mathrm{3}}{M}_{{a}} +\frac{\mathrm{2}}{\mathrm{3}}{M}_{{b}} +\frac{\mathrm{2}}{\mathrm{3}}{M}_{{c}} \right) \\ $$$$\:{then}\:\:{l}=\:\frac{\mathrm{2}}{\mathrm{3}}{s}\:\:\:\:\:\:\:\:\:\: \\ $$$$\:{Area}\:{of}\:{any}\:{such}\:\Delta\:{of}\:{the}\:{hexagon} \\ $$$$\:=\sqrt{{l}\left({l}−\frac{\mathrm{2}}{\mathrm{3}}{M}_{{a}} \right)\left({l}−\frac{\mathrm{2}}{\mathrm{3}}{M}_{{b}} \right)\left({l}−\frac{\mathrm{2}}{\mathrm{3}}{M}_{{c}} \right)}\: \\ $$$$\:{as}\:\:{l}=\frac{\mathrm{2}}{\mathrm{3}}{s}\:\:{we}\:{have} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{6}}\left({hexagon}\:{area}\right)\: \\ $$$$\:=\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} \sqrt{{s}\left({s}−{M}_{{a}} \right)\left({s}−{M}_{{b}} \right)\left({s}−{M}_{{c}} \right)}\: \\ $$$${hexagon}\:{area}\:=\mathrm{2}\left({area}\:{of}\:\Delta{ABC}\right) \\ $$$$\:\:\:\:\:=\mathrm{2}\Delta\:\:\:,\:\:\:\:{therefore} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{2}\Delta\right)=\frac{\mathrm{4}}{\mathrm{9}}\sqrt{{s}\left({s}−{M}_{{a}} \right)\left({s}−{M}_{{b}} \right)\left({s}−{M}_{{c}} \right)}\: \\ $$$$\:\Delta=\frac{\mathrm{4}}{\mathrm{3}}\sqrt{{s}\left({s}−{M}_{{a}} \right)\left({s}−{M}_{{b}} \left({s}−{M}_{{c}} \right)\right.}\:. \\ $$

Commented by Tinkutara last updated on 14/Jun/17

How are the sides of ΔGBL two-third  of the medians of ΔABC?

$$\mathrm{How}\:\mathrm{are}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\Delta{GBL}\:\mathrm{two}-\mathrm{third} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{medians}\:\mathrm{of}\:\Delta{ABC}? \\ $$

Commented by ajfour last updated on 14/Jun/17

lines are constructed parallel to  the medians ..   GB=(2/3)BQ = (2/3)M_b    BL=(2/3)CG = (2/3)M_c    GL=BN=AG=(2/3)AP = (2/3)M_a  .

$${lines}\:{are}\:{constructed}\:{parallel}\:{to} \\ $$$${the}\:{medians}\:.. \\ $$$$\:{GB}=\frac{\mathrm{2}}{\mathrm{3}}{BQ}\:=\:\frac{\mathrm{2}}{\mathrm{3}}{M}_{{b}} \\ $$$$\:{BL}=\frac{\mathrm{2}}{\mathrm{3}}{CG}\:=\:\frac{\mathrm{2}}{\mathrm{3}}{M}_{{c}} \\ $$$$\:{GL}={BN}={AG}=\frac{\mathrm{2}}{\mathrm{3}}{AP}\:=\:\frac{\mathrm{2}}{\mathrm{3}}{M}_{{a}} \:. \\ $$

Commented by Tinkutara last updated on 14/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Commented by RasheedSoomro last updated on 14/Jun/17

VNiCE   Sir!

$$\mathbb{V}{NiC}\mathcal{E}\:\:\:\mathbb{S}\mathrm{ir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com