Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 159021 by Abdissalammjr last updated on 11/Nov/21

Answered by mkam last updated on 11/Nov/21

  (dy/dx)−((2x)/(x+4)) y = −0.4    p(x) = − ((2x)/(x+4)) , Q(x)= −0.4    (i.f)= e^(∫p(x)dx) = e^(∫ −((2x)/(x+4)) dx) = e^(−2∫ (1−(4/(x+4)))dx) = e^(−2x +ln(x+4)^8 ) =(x+4)^8  . e^(−2x)     y = ((∫ (i.f). Q(x) dx)/((i.f))) = ((−0.4∫ (x+4)^8  . e^(−2x)  dx)/((x+4)^8  . e^(−2x) ))      now complete sir

$$ \\ $$$$\frac{{dy}}{{dx}}−\frac{\mathrm{2}{x}}{{x}+\mathrm{4}}\:{y}\:=\:−\mathrm{0}.\mathrm{4} \\ $$$$ \\ $$$${p}\left({x}\right)\:=\:−\:\frac{\mathrm{2}{x}}{{x}+\mathrm{4}}\:,\:{Q}\left({x}\right)=\:−\mathrm{0}.\mathrm{4} \\ $$$$ \\ $$$$\left({i}.{f}\right)=\:{e}^{\int{p}\left({x}\right){dx}} =\:{e}^{\int\:−\frac{\mathrm{2}{x}}{{x}+\mathrm{4}}\:{dx}} =\:{e}^{−\mathrm{2}\int\:\left(\mathrm{1}−\frac{\mathrm{4}}{{x}+\mathrm{4}}\right){dx}} =\:{e}^{−\mathrm{2}{x}\:+{ln}\left({x}+\mathrm{4}\right)^{\mathrm{8}} } =\left({x}+\mathrm{4}\right)^{\mathrm{8}} \:.\:{e}^{−\mathrm{2}{x}} \\ $$$$ \\ $$$${y}\:=\:\frac{\int\:\left({i}.{f}\right).\:{Q}\left({x}\right)\:{dx}}{\left({i}.{f}\right)}\:=\:\frac{−\mathrm{0}.\mathrm{4}\int\:\left({x}+\mathrm{4}\right)^{\mathrm{8}} \:.\:{e}^{−\mathrm{2}{x}} \:{dx}}{\left({x}+\mathrm{4}\right)^{\mathrm{8}} \:.\:{e}^{−\mathrm{2}{x}} } \\ $$$$ \\ $$$$ \\ $$$${now}\:{complete}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com