Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 159035 by HongKing last updated on 12/Nov/21

Commented by mr W last updated on 12/Nov/21

no unique solution possible.  we can select a very small value for  z=δ with δ→0. then we have  m=min(×, ×, ×) →0  i.e. m doesn′t exist!    i think the question should be  m=max(×,×,×)

$${no}\:{unique}\:{solution}\:{possible}. \\ $$$${we}\:{can}\:{select}\:{a}\:{very}\:{small}\:{value}\:{for} \\ $$$${z}=\delta\:{with}\:\delta\rightarrow\mathrm{0}.\:{then}\:{we}\:{have} \\ $$$${m}={min}\left(×,\:×,\:×\right)\:\rightarrow\mathrm{0} \\ $$$${i}.{e}.\:{m}\:{doesn}'{t}\:{exist}! \\ $$$$ \\ $$$${i}\:{think}\:{the}\:{question}\:{should}\:{be} \\ $$$${m}={max}\left(×,×,×\right) \\ $$

Commented by HongKing last updated on 12/Nov/21

no there is solution for my problem  my dear Ser

$$\mathrm{no}\:\mathrm{there}\:\mathrm{is}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{my}\:\mathrm{problem} \\ $$$$\mathrm{my}\:\mathrm{dear}\:\mathrm{Ser} \\ $$

Commented by mr W last updated on 12/Nov/21

then please share your solution:  how large is m?  please don′t just say, but also do!  otherwise it′s not fair from you,  because i always tell you my complete  solution, but you just say you have  the solution without telling how the  solution is.

$${then}\:{please}\:{share}\:{your}\:{solution}: \\ $$$${how}\:{large}\:{is}\:{m}? \\ $$$${please}\:{don}'{t}\:{just}\:{say},\:{but}\:{also}\:{do}! \\ $$$${otherwise}\:{it}'{s}\:{not}\:{fair}\:{from}\:{you}, \\ $$$${because}\:{i}\:{always}\:{tell}\:{you}\:{my}\:{complete} \\ $$$${solution},\:{but}\:{you}\:{just}\:{say}\:{you}\:{have} \\ $$$${the}\:{solution}\:{without}\:{telling}\:{how}\:{the} \\ $$$${solution}\:{is}. \\ $$

Commented by HongKing last updated on 12/Nov/21

assume that → m ≥ 1  then we have (2ab^2 +b^3 c)(2bc^2 +c^3 a)(2ca^2 +a^3 b)≥1  but by → AM - GM → we have:  (2ab^2 +b^3 c)(2bc^2 +c^3 a)(2ca^2 +a^3 b)  = (abc)^2 (2a+bc)(2b+ca)(2c+ab)  ≤^(AM-GM)  (((a+b+c)/3))^6 (((2(a+b+c)(ab+bc+ca))/3))^3   ≤ ((2/3))^6 (((2∙2)/3) + (((a+b+c)^2 )/(3∙3)))^3   = ((2/3))^6 (((16)/9))^3 = ((8/9))^6 < 1  then we have → m < 1  therefore the equation → x^2  + 2x + m = 0  has root → -1 ± (√(1 - m)) •

$$\mathrm{assume}\:\mathrm{that}\:\rightarrow\:\mathrm{m}\:\geqslant\:\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{we}\:\mathrm{have}\:\left(\mathrm{2ab}^{\mathrm{2}} +\mathrm{b}^{\mathrm{3}} \mathrm{c}\right)\left(\mathrm{2bc}^{\mathrm{2}} +\mathrm{c}^{\mathrm{3}} \mathrm{a}\right)\left(\mathrm{2ca}^{\mathrm{2}} +\mathrm{a}^{\mathrm{3}} \mathrm{b}\right)\geqslant\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{by}\:\rightarrow\:\mathrm{AM}\:-\:\mathrm{GM}\:\rightarrow\:\mathrm{we}\:\mathrm{have}: \\ $$$$\left(\mathrm{2ab}^{\mathrm{2}} +\mathrm{b}^{\mathrm{3}} \mathrm{c}\right)\left(\mathrm{2bc}^{\mathrm{2}} +\mathrm{c}^{\mathrm{3}} \mathrm{a}\right)\left(\mathrm{2ca}^{\mathrm{2}} +\mathrm{a}^{\mathrm{3}} \mathrm{b}\right) \\ $$$$=\:\left(\mathrm{abc}\right)^{\mathrm{2}} \left(\mathrm{2a}+\mathrm{bc}\right)\left(\mathrm{2b}+\mathrm{ca}\right)\left(\mathrm{2c}+\mathrm{ab}\right) \\ $$$$\overset{\boldsymbol{\mathrm{AM}}-\boldsymbol{\mathrm{GM}}} {\leqslant}\:\left(\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{3}}\right)^{\mathrm{6}} \left(\frac{\mathrm{2}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right)}{\mathrm{3}}\right)^{\mathrm{3}} \\ $$$$\leqslant\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{6}} \left(\frac{\mathrm{2}\centerdot\mathrm{2}}{\mathrm{3}}\:+\:\frac{\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)^{\mathrm{2}} }{\mathrm{3}\centerdot\mathrm{3}}\right)^{\mathrm{3}} \\ $$$$=\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{6}} \left(\frac{\mathrm{16}}{\mathrm{9}}\right)^{\mathrm{3}} =\:\left(\frac{\mathrm{8}}{\mathrm{9}}\right)^{\mathrm{6}} <\:\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{we}\:\mathrm{have}\:\rightarrow\:\mathrm{m}\:<\:\mathrm{1} \\ $$$$\mathrm{therefore}\:\mathrm{the}\:\mathrm{equation}\:\rightarrow\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:+\:\mathrm{m}\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{root}\:\rightarrow\:-\mathrm{1}\:\pm\:\sqrt{\mathrm{1}\:-\:\mathrm{m}}\:\bullet \\ $$

Commented by mr W last updated on 12/Nov/21

i think, as long as m doesn′t exist,   equation x^2 +2x+m=0 has no root.   this is the same as:  let m=min(f(t)) with f(t)=(1/(1+t^2 ))  solve x^2 +2x+m=0

$${i}\:{think},\:{as}\:{long}\:{as}\:{m}\:{doesn}'{t}\:{exist},\: \\ $$$${equation}\:{x}^{\mathrm{2}} +\mathrm{2}{x}+{m}=\mathrm{0}\:{has}\:{no}\:{root}.\: \\ $$$${this}\:{is}\:{the}\:{same}\:{as}: \\ $$$${let}\:{m}={min}\left({f}\left({t}\right)\right)\:{with}\:{f}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${solve}\:{x}^{\mathrm{2}} +\mathrm{2}{x}+{m}=\mathrm{0} \\ $$

Commented by HongKing last updated on 13/Nov/21

My dear Ser, can you tell me more  about this fraction  (1/(1+t^2 )) ? I did not understand

$$\mathrm{My}\:\mathrm{dear}\:\mathrm{Ser},\:\mathrm{can}\:\mathrm{you}\:\mathrm{tell}\:\mathrm{me}\:\mathrm{more} \\ $$$$\mathrm{about}\:\mathrm{this}\:\mathrm{fraction}\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:?\:\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{understand} \\ $$

Commented by mr W last updated on 13/Nov/21

i just want to say: the function   f(t)=(1/(1+x^2 )) is always less than or equal  to 1. but it has no minimum m, i.e.  m=min(f(t)) doesn′t exist. if m  doesn′t exist, we can also not solve  x^2 +2x+m=0, because in this  equation m is not just a variable, but  a concrete value which is defined as  the minimum value of the function  f(t)=(1/(1+t^2 )). when m doesn′t exist,  the so called roots −1±(√(1−m)) don′t  exist either.  in your question m is defined as  the minimun of a function  F(a,b,c). but this function also has  no minimum m, therefore x^2 +2x+m=0  has no roots.

$${i}\:{just}\:{want}\:{to}\:{say}:\:{the}\:{function}\: \\ $$$${f}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{is}\:{always}\:{less}\:{than}\:{or}\:{equal} \\ $$$${to}\:\mathrm{1}.\:{but}\:{it}\:{has}\:{no}\:{minimum}\:{m},\:{i}.{e}. \\ $$$${m}={min}\left({f}\left({t}\right)\right)\:{doesn}'{t}\:{exist}.\:{if}\:{m} \\ $$$${doesn}'{t}\:{exist},\:{we}\:{can}\:{also}\:{not}\:{solve} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{x}+{m}=\mathrm{0},\:{because}\:{in}\:{this} \\ $$$${equation}\:{m}\:{is}\:{not}\:{just}\:{a}\:{variable},\:{but} \\ $$$${a}\:{concrete}\:{value}\:{which}\:{is}\:{defined}\:{as} \\ $$$${the}\:{minimum}\:{value}\:{of}\:{the}\:{function} \\ $$$${f}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }.\:{when}\:{m}\:{doesn}'{t}\:{exist}, \\ $$$${the}\:{so}\:{called}\:{roots}\:−\mathrm{1}\pm\sqrt{\mathrm{1}−{m}}\:{don}'{t} \\ $$$${exist}\:{either}. \\ $$$${in}\:{your}\:{question}\:{m}\:{is}\:{defined}\:{as} \\ $$$${the}\:{minimun}\:{of}\:{a}\:{function} \\ $$$${F}\left({a},{b},{c}\right).\:{but}\:{this}\:{function}\:{also}\:{has} \\ $$$${no}\:{minimum}\:{m},\:{therefore}\:{x}^{\mathrm{2}} +\mathrm{2}{x}+{m}=\mathrm{0} \\ $$$${has}\:{no}\:{roots}. \\ $$

Commented by HongKing last updated on 13/Nov/21

m  is constant, not variable

$$\boldsymbol{\mathrm{m}}\:\:\mathrm{is}\:\mathrm{constant},\:\mathrm{not}\:\mathrm{variable} \\ $$

Commented by mr W last updated on 13/Nov/21

m  is constant which doesn′t exist.  this is elementary, i think there is  no need for further discussion about  it.

$$\boldsymbol{\mathrm{m}}\:\:\mathrm{is}\:\mathrm{constant}\:{which}\:{doesn}'{t}\:{exist}. \\ $$$${this}\:{is}\:{elementary},\:{i}\:{think}\:{there}\:{is} \\ $$$${no}\:{need}\:{for}\:{further}\:{discussion}\:{about} \\ $$$${it}. \\ $$

Commented by HongKing last updated on 13/Nov/21

When we assume that m is greater,  it leads to wrong result,  then m must be less 1,  this is the main idea..

$$\mathrm{When}\:\mathrm{we}\:\mathrm{assume}\:\mathrm{that}\:\boldsymbol{\mathrm{m}}\:\mathrm{is}\:\mathrm{greater}, \\ $$$$\mathrm{it}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{wrong}\:\mathrm{result}, \\ $$$$\mathrm{then}\:\boldsymbol{\mathrm{m}}\:\mathrm{must}\:\mathrm{be}\:\mathrm{less}\:\mathrm{1}, \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{main}\:\mathrm{idea}.. \\ $$

Commented by HongKing last updated on 13/Nov/21

Again..  The equation:  x^2 +2x+m=0 → with: Δ=4(1-n)  Assume that:  m>1 → then: 2ab^2 +b^3 c>1 ; 2bc^2 +c^3 a>1 ; 2ca^2 +a^3 b>1  Now using condition:  2ab^2 +b^3 c=b^2 (2(2-b-c)+bc)=b^2 (2-b)(2-c)>1  Smilarly:  2bc^2 +c^3 a=c^2 (2-a)(2-c)>1                       2ca^2 +a^3 b=a^2 (2-a)(2-b)>1  Thus:  abc(2-a)(2-b)(2-c)>1  (∗)  Using AM-GM →  0≤a(2-a)≤1 ; 0≤b(2-b)≤1 ; 0≤c(2-c)≤1  Or:  abc(2-a)(2-b)(2-c)≤1  (∗∗)  By (∗) and (∗∗) we get  m≤1  and the initial  equation has root:  x_1  ; x_2  = {-1 + (√(1 - m)) ; -1 - (√(1 - m)) }

$$\mathrm{Again}.. \\ $$$$\mathrm{The}\:\mathrm{equation}:\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{m}=\mathrm{0}\:\rightarrow\:\mathrm{with}:\:\Delta=\mathrm{4}\left(\mathrm{1}-\mathrm{n}\right) \\ $$$$\mathrm{Assume}\:\mathrm{that}:\:\:\mathrm{m}>\mathrm{1}\:\rightarrow\:\mathrm{then}:\:\mathrm{2ab}^{\mathrm{2}} +\mathrm{b}^{\mathrm{3}} \mathrm{c}>\mathrm{1}\:;\:\mathrm{2bc}^{\mathrm{2}} +\mathrm{c}^{\mathrm{3}} \mathrm{a}>\mathrm{1}\:;\:\mathrm{2ca}^{\mathrm{2}} +\mathrm{a}^{\mathrm{3}} \mathrm{b}>\mathrm{1} \\ $$$$\mathrm{Now}\:\mathrm{using}\:\mathrm{condition}:\:\:\mathrm{2ab}^{\mathrm{2}} +\mathrm{b}^{\mathrm{3}} \mathrm{c}=\mathrm{b}^{\mathrm{2}} \left(\mathrm{2}\left(\mathrm{2}-\mathrm{b}-\mathrm{c}\right)+\mathrm{bc}\right)=\mathrm{b}^{\mathrm{2}} \left(\mathrm{2}-\mathrm{b}\right)\left(\mathrm{2}-\mathrm{c}\right)>\mathrm{1} \\ $$$$\mathrm{Smilarly}:\:\:\mathrm{2bc}^{\mathrm{2}} +\mathrm{c}^{\mathrm{3}} \mathrm{a}=\mathrm{c}^{\mathrm{2}} \left(\mathrm{2}-\mathrm{a}\right)\left(\mathrm{2}-\mathrm{c}\right)>\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2ca}^{\mathrm{2}} +\mathrm{a}^{\mathrm{3}} \mathrm{b}=\mathrm{a}^{\mathrm{2}} \left(\mathrm{2}-\mathrm{a}\right)\left(\mathrm{2}-\mathrm{b}\right)>\mathrm{1} \\ $$$$\mathrm{Thus}:\:\:\mathrm{abc}\left(\mathrm{2}-\mathrm{a}\right)\left(\mathrm{2}-\mathrm{b}\right)\left(\mathrm{2}-\mathrm{c}\right)>\mathrm{1}\:\:\left(\ast\right) \\ $$$$\mathrm{Using}\:\boldsymbol{\mathrm{AM}}-\boldsymbol{\mathrm{GM}}\:\rightarrow\:\:\mathrm{0}\leqslant\mathrm{a}\left(\mathrm{2}-\mathrm{a}\right)\leqslant\mathrm{1}\:;\:\mathrm{0}\leqslant\mathrm{b}\left(\mathrm{2}-\mathrm{b}\right)\leqslant\mathrm{1}\:;\:\mathrm{0}\leqslant\mathrm{c}\left(\mathrm{2}-\mathrm{c}\right)\leqslant\mathrm{1} \\ $$$$\mathrm{Or}:\:\:\mathrm{abc}\left(\mathrm{2}-\mathrm{a}\right)\left(\mathrm{2}-\mathrm{b}\right)\left(\mathrm{2}-\mathrm{c}\right)\leqslant\mathrm{1}\:\:\left(\ast\ast\right) \\ $$$$\mathrm{By}\:\left(\ast\right)\:\mathrm{and}\:\left(\ast\ast\right)\:\mathrm{we}\:\mathrm{get}\:\:\boldsymbol{\mathrm{m}}\leqslant\mathrm{1}\:\:\mathrm{and}\:\mathrm{the}\:\mathrm{initial}\:\:\mathrm{equation}\:\mathrm{has}\:\mathrm{root}: \\ $$$$\boldsymbol{\mathrm{x}}_{\mathrm{1}} \:;\:\boldsymbol{\mathrm{x}}_{\mathrm{2}} \:=\:\left\{-\mathrm{1}\:+\:\sqrt{\mathrm{1}\:-\:\mathrm{m}}\:;\:-\mathrm{1}\:-\:\sqrt{\mathrm{1}\:-\:\mathrm{m}}\:\right\} \\ $$

Commented by mr W last updated on 13/Nov/21

even when m>1 there are roots from  x^2 +2x+m=0. but even whem m<1,  but when it doesn′t exist, there is no  root from x^2 +2x+m=0. i′m only  convinced when you can find the  minimum value m concretely. the  minimum of a function is a fixed  value, not a range like m≤1.

$${even}\:{when}\:{m}>\mathrm{1}\:{there}\:{are}\:{roots}\:{from} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{x}+{m}=\mathrm{0}.\:{but}\:{even}\:{whem}\:{m}<\mathrm{1}, \\ $$$${but}\:{when}\:{it}\:{doesn}'{t}\:{exist},\:{there}\:{is}\:{no} \\ $$$${root}\:{from}\:{x}^{\mathrm{2}} +\mathrm{2}{x}+{m}=\mathrm{0}.\:{i}'{m}\:{only} \\ $$$${convinced}\:{when}\:{you}\:{can}\:{find}\:{the} \\ $$$${minimum}\:{value}\:{m}\:{concretely}.\:{the} \\ $$$${minimum}\:{of}\:{a}\:{function}\:{is}\:{a}\:{fixed} \\ $$$${value},\:{not}\:{a}\:{range}\:{like}\:{m}\leqslant\mathrm{1}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com