Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 159293 by ajfour last updated on 15/Nov/21

Commented by ajfour last updated on 15/Nov/21

Trying Q.159085 again..

$${Trying}\:{Q}.\mathrm{159085}\:{again}.. \\ $$

Answered by ajfour last updated on 17/Nov/21

let position, velocity and acc.   of bottom wheel of box be x,v,a.  (dθ/dt)=ω  let R=2  x=8sin θ  ;  v=8ωcos θ     ....(i)  let   tan^(−1) 2=β  θ+β−90°=φ  (at start φ=0)  let V be center of mass velocity of  box.    and  q=2(√5)  V_x =v−ωqsin (θ+β)       =8ωcos θ−ωqsin (θ+β)  V_y =−ωqcos (θ+β)  V^( 2) =64ω^2 cos^2 θ+ω^2 q^2 −2ωqvsin (θ+β)                            ..(ii)  let velocity of sphere be u.  ucos ϕ=vcos ϕ−4ωsin θ  ⇒ u^2 =ω^2 (8cos θ−((4sin θ)/(cos ϕ)))^2    ★  u^2 =v^2 +((16ω^2 sin^2 θ)/(cos^2 ϕ))−((8ωvsin θ)/(cos ϕ))  ..(iii)  &  1+sin ϕ=2sin θ  When contact breaks   (du/dt)=0  & from energy conservation    ((2△U_g )/m)= 2g(2(√5)−4cos θ−2sin θ)       = V^( 2) +Iω^2 +u^2              ...(iii)       =v^2 +ω^2 q^2 −2ωqvsin (θ+β)    +v^2 +((16ω^2 sin^2 θ)/(cos^2 ϕ))−((8ωvsin θ)/(cos ϕ))+((80ω^2 )/(12))  now  using ..(i)&(ii) in above eq.   ((2△U_g )/(mω^2 ))= {64cos^2 θ+20  −32(√5)cos θsin (θ+β)}+{((20)/3)}  {64cos^2 θ+((16sin^2 θ)/(1−(2sin θ−1)^2 ))−((64sin θcos θ)/( (√(1−(2sin θ−1)^2 ))))}      ⇒  2g(2(√5)−4cos θ−2sin θ)      = (u^2 /((8cos θ−((4sin θ)/(cos ϕ)))^2 )){((80)/3)+128cos^2 θ         −32(√5)cos θsin (θ+β)       +((16sin^2 θ)/(1−(2sin θ−1)^2 ))−((64sin θcos θ)/( (√(1−(2sin θ−1)^2 ))))}    ⇒  finally  u^2 (θ)  is =   ((2g(2(√5)−4cos θ−2sin θ)[8cos θ−((4sin θ)/( (√(1−(2sin θ−1)^2 ))))]^2 )/({128cos^2 θ+32(√5)cos θsin (θ+β)+((16sin^2 θ)/(1−(2sin θ−1)^2 ))−((64sin θcos θ)/( (√(1−(2sin θ−1)^2 ))))+((80)/3)}))       ......

$${let}\:{position},\:{velocity}\:{and}\:{acc}. \\ $$$$\:{of}\:{bottom}\:{wheel}\:{of}\:{box}\:{be}\:{x},{v},{a}. \\ $$$$\frac{{d}\theta}{{dt}}=\omega \\ $$$${let}\:{R}=\mathrm{2} \\ $$$${x}=\mathrm{8sin}\:\theta\:\:;\:\:{v}=\mathrm{8}\omega\mathrm{cos}\:\theta\:\:\:\:\:....\left({i}\right) \\ $$$${let}\:\:\:\mathrm{tan}^{−\mathrm{1}} \mathrm{2}=\beta \\ $$$$\theta+\beta−\mathrm{90}°=\phi\:\:\left({at}\:{start}\:\phi=\mathrm{0}\right) \\ $$$${let}\:{V}\:{be}\:{center}\:{of}\:{mass}\:{velocity}\:{of} \\ $$$${box}.\:\:\:\:{and}\:\:{q}=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$${V}_{{x}} ={v}−\omega{q}\mathrm{sin}\:\left(\theta+\beta\right) \\ $$$$\:\:\:\:\:=\mathrm{8}\omega\mathrm{cos}\:\theta−\omega{q}\mathrm{sin}\:\left(\theta+\beta\right) \\ $$$${V}_{{y}} =−\omega{q}\mathrm{cos}\:\left(\theta+\beta\right) \\ $$$${V}^{\:\mathrm{2}} =\mathrm{64}\omega^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta+\omega^{\mathrm{2}} {q}^{\mathrm{2}} −\mathrm{2}\omega{qv}\mathrm{sin}\:\left(\theta+\beta\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..\left({ii}\right) \\ $$$${let}\:{velocity}\:{of}\:{sphere}\:{be}\:{u}. \\ $$$${u}\mathrm{cos}\:\varphi={v}\mathrm{cos}\:\varphi−\mathrm{4}\omega\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:{u}^{\mathrm{2}} =\omega^{\mathrm{2}} \left(\mathrm{8cos}\:\theta−\frac{\mathrm{4sin}\:\theta}{\mathrm{cos}\:\varphi}\right)^{\mathrm{2}} \:\:\:\bigstar \\ $$$${u}^{\mathrm{2}} ={v}^{\mathrm{2}} +\frac{\mathrm{16}\omega^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{cos}\:^{\mathrm{2}} \varphi}−\frac{\mathrm{8}\omega{v}\mathrm{sin}\:\theta}{\mathrm{cos}\:\varphi}\:\:..\left({iii}\right) \\ $$$$\&\:\:\mathrm{1}+\mathrm{sin}\:\varphi=\mathrm{2sin}\:\theta \\ $$$${When}\:{contact}\:{breaks}\:\:\:\frac{{du}}{{dt}}=\mathrm{0} \\ $$$$\&\:{from}\:{energy}\:{conservation} \\ $$$$\:\:\frac{\mathrm{2}\bigtriangleup{U}_{{g}} }{{m}}=\:\mathrm{2}{g}\left(\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{4cos}\:\theta−\mathrm{2sin}\:\theta\right) \\ $$$$\:\:\:\:\:=\:{V}^{\:\mathrm{2}} +{I}\omega^{\mathrm{2}} +{u}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:...\left({iii}\right) \\ $$$$\:\:\:\:\:={v}^{\mathrm{2}} +\omega^{\mathrm{2}} {q}^{\mathrm{2}} −\mathrm{2}\omega{qv}\mathrm{sin}\:\left(\theta+\beta\right) \\ $$$$\:\:+{v}^{\mathrm{2}} +\frac{\mathrm{16}\omega^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{cos}\:^{\mathrm{2}} \varphi}−\frac{\mathrm{8}\omega{v}\mathrm{sin}\:\theta}{\mathrm{cos}\:\varphi}+\frac{\mathrm{80}\omega^{\mathrm{2}} }{\mathrm{12}} \\ $$$${now}\:\:{using}\:..\left({i}\right)\&\left({ii}\right)\:{in}\:{above}\:{eq}. \\ $$$$\:\frac{\mathrm{2}\bigtriangleup{U}_{{g}} }{{m}\omega^{\mathrm{2}} }=\:\left\{\mathrm{64cos}\:^{\mathrm{2}} \theta+\mathrm{20}\right. \\ $$$$\left.−\mathrm{32}\sqrt{\mathrm{5}}\mathrm{cos}\:\theta\mathrm{sin}\:\left(\theta+\beta\right)\right\}+\left\{\frac{\mathrm{20}}{\mathrm{3}}\right\} \\ $$$$\left\{\mathrm{64cos}\:^{\mathrm{2}} \theta+\frac{\mathrm{16sin}\:^{\mathrm{2}} \theta}{\mathrm{1}−\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{64sin}\:\theta\mathrm{cos}\:\theta}{\:\sqrt{\mathrm{1}−\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }}\right\} \\ $$$$\:\:\:\:\Rightarrow \\ $$$$\mathrm{2}{g}\left(\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{4cos}\:\theta−\mathrm{2sin}\:\theta\right) \\ $$$$\:\:\:\:=\:\frac{{u}^{\mathrm{2}} }{\left(\mathrm{8cos}\:\theta−\frac{\mathrm{4sin}\:\theta}{\mathrm{cos}\:\varphi}\right)^{\mathrm{2}} }\left\{\frac{\mathrm{80}}{\mathrm{3}}+\mathrm{128cos}\:^{\mathrm{2}} \theta\right. \\ $$$$\:\:\:\:\:\:\:−\mathrm{32}\sqrt{\mathrm{5}}\mathrm{cos}\:\theta\mathrm{sin}\:\left(\theta+\beta\right) \\ $$$$\left.\:\:\:\:\:+\frac{\mathrm{16sin}\:^{\mathrm{2}} \theta}{\mathrm{1}−\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{64sin}\:\theta\mathrm{cos}\:\theta}{\:\sqrt{\mathrm{1}−\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }}\right\} \\ $$$$ \\ $$$$\Rightarrow\:\:{finally}\:\:{u}^{\mathrm{2}} \left(\theta\right)\:\:{is}\:= \\ $$$$\:\frac{\mathrm{2}{g}\left(\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{4cos}\:\theta−\mathrm{2sin}\:\theta\right)\left[\mathrm{8cos}\:\theta−\frac{\mathrm{4sin}\:\theta}{\:\sqrt{\mathrm{1}−\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }}\right]^{\mathrm{2}} }{\left\{\mathrm{128cos}\:^{\mathrm{2}} \theta+\mathrm{32}\sqrt{\mathrm{5}}\mathrm{cos}\:\theta\mathrm{sin}\:\left(\theta+\beta\right)+\frac{\mathrm{16sin}\:^{\mathrm{2}} \theta}{\mathrm{1}−\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{64sin}\:\theta\mathrm{cos}\:\theta}{\:\sqrt{\mathrm{1}−\left(\mathrm{2sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }}+\frac{\mathrm{80}}{\mathrm{3}}\right\}}\:\:\:\:\: \\ $$$$...... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com