Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 159854 by mnjuly1970 last updated on 21/Nov/21

         Ω := ∫_0 ^( (π/4)) x.ln(sin(x))dx= ?

$$ \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {x}.{ln}\left({sin}\left({x}\right)\right){dx}=\:? \\ $$$$ \\ $$$$ \\ $$

Answered by mindispower last updated on 22/Nov/21

ln(sin(x))=−ln(2)−Σ_(n≥1) ((cos(2nx))/n)  Ω=∫_0 ^(π/4) x(−ln(2)−Σ((cos(2nx))/n))dx  =−((ln(2))/(32))π^2 −Σ_(n≥1) (1/n)∫_0 ^(π/4) cos(2nx)xdx  =−((ln(2))/(32))π^2 −Σ_(n≥1) (1/n)[((sin(n(π/2)))/(2n)).(π/4)−(1/(2n))∫_0 ^(π/4) sin(2nx)dx  =−((ln(2)π^2 )/(32))+Σ_(n≥1) (−(π/8).((sin(((nπ)/2)))/n^2 )−(1/(4n^3 ))[cos(((nπ)/2))−1])  =−((ln(2)π^2 )/(32))−(π/8).Σ_(n≥0) (((−1)^n )/((2n+1)^2 ))−(1/4)Σ_(n≥1) (((−1)^n )/(8n^3 ))+((ζ(3))/4)  =((−ln(2))/(32))π^2 −(π/8)G+((ζ(3))/4)−(1/(32))((1/4)−1)ζ(3)  =−((ln(2))/(32))π^2 −(π/8)G+((35)/(128))ζ(3)

$${ln}\left({sin}\left({x}\right)\right)=−{ln}\left(\mathrm{2}\right)−\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}{nx}\right)}{{n}} \\ $$$$\Omega=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {x}\left(−{ln}\left(\mathrm{2}\right)−\Sigma\frac{{cos}\left(\mathrm{2}{nx}\right)}{{n}}\right){dx} \\ $$$$=−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{32}}\pi^{\mathrm{2}} −\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cos}\left(\mathrm{2}{nx}\right){xdx} \\ $$$$=−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{32}}\pi^{\mathrm{2}} −\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}}\left[\frac{{sin}\left({n}\frac{\pi}{\mathrm{2}}\right)}{\mathrm{2}{n}}.\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}{n}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {sin}\left(\mathrm{2}{nx}\right){dx}\right. \\ $$$$=−\frac{{ln}\left(\mathrm{2}\right)\pi^{\mathrm{2}} }{\mathrm{32}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\left(−\frac{\pi}{\mathrm{8}}.\frac{{sin}\left(\frac{{n}\pi}{\mathrm{2}}\right)}{{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{3}} }\left[{cos}\left(\frac{{n}\pi}{\mathrm{2}}\right)−\mathrm{1}\right]\right) \\ $$$$=−\frac{{ln}\left(\mathrm{2}\right)\pi^{\mathrm{2}} }{\mathrm{32}}−\frac{\pi}{\mathrm{8}}.\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{8}{n}^{\mathrm{3}} }+\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{4}} \\ $$$$=\frac{−{ln}\left(\mathrm{2}\right)}{\mathrm{32}}\pi^{\mathrm{2}} −\frac{\pi}{\mathrm{8}}{G}+\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{32}}\left(\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}\right)\zeta\left(\mathrm{3}\right) \\ $$$$=−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{32}}\pi^{\mathrm{2}} −\frac{\pi}{\mathrm{8}}{G}+\frac{\mathrm{35}}{\mathrm{128}}\zeta\left(\mathrm{3}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 23/Nov/21

thanks alot  sir Power...

$${thanks}\:{alot}\:\:{sir}\:\mathrm{Power}... \\ $$

Commented by mindispower last updated on 23/Nov/21

withe pleasur sir have a nice day

$${withe}\:{pleasur}\:{sir}\:{have}\:{a}\:{nice}\:{day} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com