Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 160205 by Tawa11 last updated on 25/Nov/21

Answered by mr W last updated on 26/Nov/21

Commented by mr W last updated on 26/Nov/21

orange shaded area   =(8/2)×4 tan 54°−(8/2)×4 tan 36°  =16 (tan 54°−tan 36°)  area of star =5×16 (tan 54°−tan 36°)  =80(tan 54°−tan 36°)≈51.987 cm^2     exact form:  sin 18°=(((√5)−1)/4)  cos 36°=1−2((((√5)−1)/4))^2 =(((√5)+1)/4)  tan 36°=(√(((4/( (√5)+1)))^2 −1))=(√(5−2(√5)))  tan 54°=(1/(tan 36°))  tan 54°−tan 36°=((1−tan^2  36°)/(tan 36°))  =((1−5+2(√5))/( (√(5−2(√5)))))=((2((√5)−2))/( (√((√5)((√5)−2)))))=((2(√(5(5−2(√5)))))/( 5))  area of star=80×((2(√(5(5−2(√5)))))/( 5))  =32(√(5(5−2(√5))))

$${orange}\:{shaded}\:{area}\: \\ $$$$=\frac{\mathrm{8}}{\mathrm{2}}×\mathrm{4}\:\mathrm{tan}\:\mathrm{54}°−\frac{\mathrm{8}}{\mathrm{2}}×\mathrm{4}\:\mathrm{tan}\:\mathrm{36}° \\ $$$$=\mathrm{16}\:\left(\mathrm{tan}\:\mathrm{54}°−\mathrm{tan}\:\mathrm{36}°\right) \\ $$$${area}\:{of}\:{star}\:=\mathrm{5}×\mathrm{16}\:\left(\mathrm{tan}\:\mathrm{54}°−\mathrm{tan}\:\mathrm{36}°\right) \\ $$$$=\mathrm{80}\left(\mathrm{tan}\:\mathrm{54}°−\mathrm{tan}\:\mathrm{36}°\right)\approx\mathrm{51}.\mathrm{987}\:{cm}^{\mathrm{2}} \\ $$$$ \\ $$$$\underline{{exact}\:{form}:} \\ $$$$\mathrm{sin}\:\mathrm{18}°=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{cos}\:\mathrm{36}°=\mathrm{1}−\mathrm{2}\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} =\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{tan}\:\mathrm{36}°=\sqrt{\left(\frac{\mathrm{4}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}\right)^{\mathrm{2}} −\mathrm{1}}=\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$\mathrm{tan}\:\mathrm{54}°=\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{36}°} \\ $$$$\mathrm{tan}\:\mathrm{54}°−\mathrm{tan}\:\mathrm{36}°=\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\mathrm{36}°}{\mathrm{tan}\:\mathrm{36}°} \\ $$$$=\frac{\mathrm{1}−\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}}}=\frac{\mathrm{2}\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)}{\:\sqrt{\sqrt{\mathrm{5}}\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)}}=\frac{\mathrm{2}\sqrt{\mathrm{5}\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}\right)}}{\:\mathrm{5}} \\ $$$${area}\:{of}\:{star}=\mathrm{80}×\frac{\mathrm{2}\sqrt{\mathrm{5}\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}\right)}}{\:\mathrm{5}} \\ $$$$=\mathrm{32}\sqrt{\mathrm{5}\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}\right)} \\ $$

Commented by Tawa11 last updated on 26/Nov/21

God bless you sir. I appreciate

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate} \\ $$

Answered by amin96 last updated on 25/Nov/21

shadow area=160×((3−(√5))/( (√(10−2(√5)))))

$${shadow}\:{area}=\mathrm{160}×\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}} \\ $$

Commented by Tawa11 last updated on 26/Nov/21

God bless you sir. I appreciate

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate} \\ $$

Answered by 1549442205PVT last updated on 26/Nov/21

we have sin36^0 =cos54^0 ⇒2sin18^0 cos18^0 =3cos.318^0   ⇒2sin18^0 cos18^0 =4cos^3 18^0 −3cos18^0   ⇒4cos^2 18^0 −3=2sin18^0 ⇒4(1−sin^2 18^0 )−3=2sin18^0   ⇒4sin^2 18^0 +2sin18^0 −1=0  ⇒sin18^0 =(((√5)−1)/4).From that we have  cos18^0 =((√(10+2(√5)))/4)  cos36^0 =1−2sin^2 18^0 =1−((3−(√5))/4)=(((√5)+1)/4)  sin36^0 =(√(1−cos^2 36^0 ))=((√(10−2(√5)))/4),  tan36^0 =((√(10−2(√5)))/( (√(5+1))))  The altitude of every white triangle is equal  h_0 =4×tan36^0 =((√5)−1)(√(10−2(√5).))Hence  the area of every white triangle is  s_0 =(1/2)mh_0 =(1/2)8.((√5)−1)(√(10−2(√5))))=4((√5)−1)(√(10−2(√5))))  Basa of it equal to b=8+2.8sin18=4((√5)+1)  the altitude of the start′s wing is  h_2 =8.sin36^0 =2(√(10−2(√5))).The area of every    the altitude of the triangle with the lateral side b and the base m=8cm  equal to h_3 =bcos18^0 =((√5)+1)(√(10+2(√5)))  the are of the triangle with the side b and altitude h_2 be:  equal to s_2 = (1/2)bh_2 =(1/2)=(1/2)4((√5)+1)(√(10−2(√5)))=2((√5)+1)(√(10−2(√(5u))))  the are of the triangle with the lateral side b and altitude h_3 be:  s_3 =(1/2)mh_3 =(1/2).8.((√5)+1)(√(10+2(√5)))=4((√5)+1(√(10+2(√5)))  the of the  pentagon equal to  S=s_3 +2s_2 =4((√5)+1)(√(10+2(√5)))+2.2((√5)+1)(√(10−2(√5)))  =4((√5)+1).4(√5)=16(5+(√5))  the of the star is:s=S−5s_0   =16(5+(√(5)))−5.4((√5)−1)(√(10−2(√5))))  ≈57.654

$${we}\:{have}\:{sin}\mathrm{36}^{\mathrm{0}} ={cos}\mathrm{54}^{\mathrm{0}} \Rightarrow\mathrm{2}{sin}\mathrm{18}^{\mathrm{0}} {cos}\mathrm{18}^{\mathrm{0}} =\mathrm{3}{cos}.\mathrm{318}^{\mathrm{0}} \\ $$$$\Rightarrow\mathrm{2}{sin}\mathrm{18}^{\mathrm{0}} {cos}\mathrm{18}^{\mathrm{0}} =\mathrm{4}{cos}^{\mathrm{3}} \mathrm{18}^{\mathrm{0}} −\mathrm{3}{cos}\mathrm{18}^{\mathrm{0}} \\ $$$$\Rightarrow\mathrm{4}{cos}^{\mathrm{2}} \mathrm{18}^{\mathrm{0}} −\mathrm{3}=\mathrm{2}{sin}\mathrm{18}^{\mathrm{0}} \Rightarrow\mathrm{4}\left(\mathrm{1}−{sin}^{\mathrm{2}} \mathrm{18}^{\mathrm{0}} \right)−\mathrm{3}=\mathrm{2}{sin}\mathrm{18}^{\mathrm{0}} \\ $$$$\Rightarrow\mathrm{4}{sin}^{\mathrm{2}} \mathrm{18}^{\mathrm{0}} +\mathrm{2}{sin}\mathrm{18}^{\mathrm{0}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{sin}\mathrm{18}^{\mathrm{0}} =\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}.{From}\:{that}\:{we}\:{have} \\ $$$${cos}\mathrm{18}^{\mathrm{0}} =\frac{\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}} \\ $$$${cos}\mathrm{36}^{\mathrm{0}} =\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \mathrm{18}^{\mathrm{0}} =\mathrm{1}−\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{4}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}} \\ $$$${sin}\mathrm{36}^{\mathrm{0}} =\sqrt{\mathrm{1}−{cos}^{\mathrm{2}} \mathrm{36}^{\mathrm{0}} }=\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}}, \\ $$$${tan}\mathrm{36}^{\mathrm{0}} =\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{5}+\mathrm{1}}} \\ $$$${The}\:{altitude}\:{of}\:{every}\:{white}\:{triangle}\:{is}\:{equal} \\ $$$${h}_{\mathrm{0}} =\mathrm{4}×{tan}\mathrm{36}^{\mathrm{0}} =\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}.}{Hence} \\ $$$${the}\:{area}\:{of}\:{every}\:{white}\:{triangle}\:{is} \\ $$$$\left.{s}_{\mathrm{0}} \left.=\frac{\mathrm{1}}{\mathrm{2}}{mh}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{8}.\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}\right)=\mathrm{4}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}\right) \\ $$$${Basa}\:{of}\:{it}\:{equal}\:{to}\:{b}=\mathrm{8}+\mathrm{2}.\mathrm{8}{sin}\mathrm{18}=\mathrm{4}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right) \\ $$$${the}\:{altitude}\:{of}\:{the}\:{start}'{s}\:{wing}\:{is} \\ $$$${h}_{\mathrm{2}} =\mathrm{8}.{sin}\mathrm{36}^{\mathrm{0}} =\mathrm{2}\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}.{The}\:{area}\:{of}\:{every}\:\: \\ $$$${the}\:{altitude}\:{of}\:{the}\:{triangle}\:{with}\:{the}\:{lateral}\:{side}\:{b}\:{and}\:{the}\:{base}\:{m}=\mathrm{8}{cm} \\ $$$${equal}\:{to}\:{h}_{\mathrm{3}} ={bcos}\mathrm{18}^{\mathrm{0}} =\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$${the}\:{are}\:{of}\:{the}\:{triangle}\:{with}\:{the}\:{side}\:{b}\:{and}\:{altitude}\:{h}_{\mathrm{2}} {be}: \\ $$$${equal}\:{to}\:{s}_{\mathrm{2}} =\:\frac{\mathrm{1}}{\mathrm{2}}{bh}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{4}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}=\mathrm{2}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}{u}}} \\ $$$${the}\:{are}\:{of}\:{the}\:{triangle}\:{with}\:{the}\:{lateral}\:{side}\:{b}\:{and}\:{altitude}\:{h}_{\mathrm{3}} {be}: \\ $$$${s}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}{mh}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{8}.\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}=\mathrm{4}\left(\sqrt{\mathrm{5}}+\mathrm{1}\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}\right. \\ $$$${the}\:{of}\:{the}\:\:{pentagon}\:{equal}\:{to} \\ $$$${S}={s}_{\mathrm{3}} +\mathrm{2}{s}_{\mathrm{2}} =\mathrm{4}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}+\mathrm{2}.\mathrm{2}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$=\mathrm{4}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right).\mathrm{4}\sqrt{\mathrm{5}}=\mathrm{16}\left(\mathrm{5}+\sqrt{\mathrm{5}}\right) \\ $$$${the}\:{of}\:{the}\:{star}\:{is}:{s}={S}−\mathrm{5}{s}_{\mathrm{0}} \\ $$$$=\mathrm{16}\left(\mathrm{5}+\sqrt{\left.\mathrm{5}\right)}−\mathrm{5}.\mathrm{4}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}\right) \\ $$$$\approx\mathrm{57}.\mathrm{654} \\ $$

Commented by Tawa11 last updated on 26/Nov/21

God bless you sir. I appreciate

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com