Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 160252 by mnjuly1970 last updated on 26/Nov/21

      ∫_0 ^( 1) (( ln^( 2) (1−x )ln(x))/x)dx=?

$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\:\right){ln}\left({x}\right)}{{x}}{dx}=? \\ $$$$ \\ $$

Answered by TheSupreme last updated on 26/Nov/21

I=  ∫_0 ^1 ln^2 (1−x)((ln(x))/x)dx=(1/2)ln^2 (1−x)ln^2 (x)−∫_0 ^1 −((ln(1−x))/(1−x))ln^2 (x)dx=  t=1−x →x=1−t→dx=−dt  =(1/2)ln^2 (1−x)ln^2 (x)−∫_0 ^1 ((ln(t))/t)ln^2 (1−t)dt  =(1/2)ln^2 (1−x)ln^2 (x)−∫_0 ^1 ((ln(t)ln^2 (1−t))/t)dt  2I=(1/2)ln^2 (1−x)ln^2 (x)]_0 ^1   ∫_0 ^1 ln^2 (1−x)((ln(x))/x)=(1/4)ln^2 (1−x) ln^2 (x)]_0 ^1   lim_(x→0)  (1/4)ln^2 (1−x)ln^2 (x)=(1/4)x^2 ln^2 (x)=0  I=0

$${I}= \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\frac{{ln}\left({x}\right)}{{x}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right){ln}^{\mathrm{2}} \left({x}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} −\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}}{ln}^{\mathrm{2}} \left({x}\right){dx}= \\ $$$${t}=\mathrm{1}−{x}\:\rightarrow{x}=\mathrm{1}−{t}\rightarrow{dx}=−{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right){ln}^{\mathrm{2}} \left({x}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{{t}}{ln}^{\mathrm{2}} \left(\mathrm{1}−{t}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right){ln}^{\mathrm{2}} \left({x}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$$\left.\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right){ln}^{\mathrm{2}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\left.\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\frac{{ln}\left({x}\right)}{{x}}=\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:{ln}^{\mathrm{2}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\:\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right){ln}^{\mathrm{2}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2}} {ln}^{\mathrm{2}} \left({x}\right)=\mathrm{0} \\ $$$${I}=\mathrm{0} \\ $$

Commented by mr W last updated on 27/Nov/21

please recheck sir!  i don′t know how to solve this definite  integral, but i′m sure it must be  negative and therefore can not be   zero.  0≤x≤1  ln^2  (1−x)>0  ln (x)<0  x>0  ⇒((ln^2  (1−x)ln (x))/x)<0  ⇒∫_0 ^1 ((ln^2  (1−x)ln (x))/x)dx<0  ⇒∫_0 ^1 ((ln^2  (1−x)ln (x))/x)dx≠0

$${please}\:{recheck}\:{sir}! \\ $$$${i}\:{don}'{t}\:{know}\:{how}\:{to}\:{solve}\:{this}\:{definite} \\ $$$${integral},\:{but}\:{i}'{m}\:{sure}\:{it}\:{must}\:{be} \\ $$$${negative}\:{and}\:{therefore}\:{can}\:{not}\:{be}\: \\ $$$${zero}. \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{1} \\ $$$$\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)>\mathrm{0} \\ $$$$\mathrm{ln}\:\left({x}\right)<\mathrm{0} \\ $$$${x}>\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\mathrm{ln}\:\left({x}\right)}{{x}}<\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\mathrm{ln}\:\left({x}\right)}{{x}}{dx}<\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\mathrm{ln}\:\left({x}\right)}{{x}}{dx}\neq\mathrm{0} \\ $$

Commented by MJS_new last updated on 27/Nov/21

∫_0 ^1  ((ln^2  (1−x) ln x)/x)dx=       [by parts]  =[(1/2)ln^2  x ln^2  (1−x)]_0 ^1 +∫_0 ^1  ((ln^2  x ln (1−x))/(1−x))dx=       [t=1−x → dx=−dt]  =[(1/2)ln^2  x ln^2  (1−x)]_0 ^1 −∫_1 ^0  ((ln^2  (1−t) ln t)/t)dt=  =[(1/2)ln^2  x ln^2  (1−x)]_0 ^1 +∫_0 ^1  ((ln^2  (1−t) ln t)/t)dt  so we have  I=[(1/2)ln^2  x ln^2  (1−x)]_0 ^1 +I  we cannot solve it this way (or am I too tired  to understand anything? it′s 2:30 a.m.)

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\:\mathrm{ln}\:{x}}{{x}}{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{by}\:\mathrm{parts}\right] \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \:{x}\:\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}^{\mathrm{2}} \:{x}\:\mathrm{ln}\:\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{1}−{x}\:\rightarrow\:{dx}=−{dt}\right] \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \:{x}\:\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\underset{\mathrm{1}} {\overset{\mathrm{0}} {\int}}\:\frac{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{t}\right)\:\mathrm{ln}\:{t}}{{t}}{dt}= \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \:{x}\:\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{t}\right)\:\mathrm{ln}\:{t}}{{t}}{dt} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have} \\ $$$${I}=\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \:{x}\:\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +{I} \\ $$$$\mathrm{we}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{this}\:\mathrm{way}\:\left(\mathrm{or}\:\mathrm{am}\:\mathrm{I}\:\mathrm{too}\:\mathrm{tired}\right. \\ $$$$\left.\mathrm{to}\:\mathrm{understand}\:\mathrm{anything}?\:\mathrm{it}'\mathrm{s}\:\mathrm{2}:\mathrm{30}\:\mathrm{a}.\mathrm{m}.\right) \\ $$

Commented by MJS_new last updated on 27/Nov/21

approximately  ∫_0 ^1  ((ln^2  (1−x) ln x)/x)dx≈−.541161616604

$$\mathrm{approximately} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−{x}\right)\:\mathrm{ln}\:{x}}{{x}}{dx}\approx−.\mathrm{541161616604} \\ $$

Answered by mnjuly1970 last updated on 27/Nov/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com