Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 160547 by mnjuly1970 last updated on 01/Dec/21

  solve     Ω=∫_0 ^( ∞) (( tan^( −1) ( x ))/((1+ x^( 2)  )(√( x)))) dx= ?  −−−−−−−−

$$\:\:{solve} \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left(\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \:\right)\sqrt{\:{x}}}\:{dx}=\:? \\ $$$$−−−−−−−− \\ $$

Answered by Kamel last updated on 01/Dec/21

  Ω=∫_0 ^(+∞) ((Arctan(x))/((1+x^2 )(√x)))dx=∫_0 ^1 ∫_0 ^(+∞) ((√x)/((1+x^2 )(1+a^2 x^2 )))dxda  Ω=∫_0 ^1 (1/(1−a^2 ))∫_0 ^(+∞) (1/(1+x^2 ))−(a^2 /(1+a^2 x^2 )))(√x)dxda     =_(v=a^2 x^2 ) ^(t=x^2 ) (1/2)∫_0 ^1 (1/(1−a^2 ))(∫_0 ^(+∞) (t^(−(1/4)) /((1+t)))dt−∫_0 ^(+∞) (((√a)v^(−(1/4)) )/(1+v))dv)da      =(π/2)(√2)∫_0 ^1 (da/((1+(√a))(1+a)))=^(u=(√a)) π(√2)∫_0 ^1 ((udu)/((1+u)(1+u^2 )))      =(π/2)(√2)(∫_0 ^1 ((udu)/((1+u)))+∫_0 ^1 ((u−u^2 )/(1+u^2 ))du)      =(π/2)(√2)(1−Ln(2)+(1/2)Ln(2)+(π/4)−1)      =(π/2)(√2)(−(1/2)Ln(2)+(π/4))     ∴  ∫_0 ^(+∞) ((Arctan(x)dx)/((1+x^2 )(√x)))=((𝛑^2 (√2))/8)−((𝛑(√2)Ln(2))/4)                             BENAICHA KAMEL

$$ \\ $$$$\Omega=\int_{\mathrm{0}} ^{+\infty} \frac{{Arctan}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{+\infty} \frac{\sqrt{{x}}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)}{dxda} \\ $$$$\left.\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }−\frac{{a}^{\mathrm{2}} }{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} }\right)\sqrt{{x}}{dxda} \\ $$$$\:\:\:\underset{{v}={a}^{\mathrm{2}} {x}^{\mathrm{2}} } {\overset{{t}={x}^{\mathrm{2}} } {=}}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }\left(\int_{\mathrm{0}} ^{+\infty} \frac{{t}^{−\frac{\mathrm{1}}{\mathrm{4}}} }{\left(\mathrm{1}+{t}\right)}{dt}−\int_{\mathrm{0}} ^{+\infty} \frac{\sqrt{{a}}{v}^{−\frac{\mathrm{1}}{\mathrm{4}}} }{\mathrm{1}+{v}}{dv}\right){da} \\ $$$$\:\:\:\:=\frac{\pi}{\mathrm{2}}\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{da}}{\left(\mathrm{1}+\sqrt{{a}}\right)\left(\mathrm{1}+{a}\right)}\overset{{u}=\sqrt{{a}}} {=}\pi\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{udu}}{\left(\mathrm{1}+{u}\right)\left(\mathrm{1}+{u}^{\mathrm{2}} \right)} \\ $$$$\:\:\:\:=\frac{\pi}{\mathrm{2}}\sqrt{\mathrm{2}}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{udu}}{\left(\mathrm{1}+{u}\right)}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }{du}\right) \\ $$$$\:\:\:\:=\frac{\pi}{\mathrm{2}}\sqrt{\mathrm{2}}\left(\mathrm{1}−{Ln}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}{Ln}\left(\mathrm{2}\right)+\frac{\pi}{\mathrm{4}}−\mathrm{1}\right) \\ $$$$\:\:\:\:=\frac{\pi}{\mathrm{2}}\sqrt{\mathrm{2}}\left(−\frac{\mathrm{1}}{\mathrm{2}}{Ln}\left(\mathrm{2}\right)+\frac{\pi}{\mathrm{4}}\right) \\ $$$$\:\:\:\therefore\:\:\int_{\mathrm{0}} ^{+\infty} \frac{\boldsymbol{{Arctan}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}}{\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{{x}}}}=\frac{\boldsymbol{\pi}^{\mathrm{2}} \sqrt{\mathrm{2}}}{\mathrm{8}}−\frac{\boldsymbol{\pi}\sqrt{\mathrm{2}}\boldsymbol{{Ln}}\left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{BENAICHA}}\:\boldsymbol{{KAMEL}} \\ $$

Commented by mnjuly1970 last updated on 01/Dec/21

      tashakor ..sir kamel

$$\:\:\:\:\:\:{tashakor}\:..{sir}\:{kamel} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com