Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16067 by Tinkutara last updated on 21/Jun/17

Let d, d′ be two nonparallel lines in the  plane and let k > 0. Find the locus of  points, the sum of whose distances to  d and d′ is equal to k.

$$\mathrm{Let}\:{d},\:{d}'\:\mathrm{be}\:\mathrm{two}\:\mathrm{nonparallel}\:\mathrm{lines}\:\mathrm{in}\:\mathrm{the} \\ $$ $$\mathrm{plane}\:\mathrm{and}\:\mathrm{let}\:{k}\:>\:\mathrm{0}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of} \\ $$ $$\mathrm{points},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{whose}\:\mathrm{distances}\:\mathrm{to} \\ $$ $${d}\:\mathrm{and}\:{d}'\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:{k}. \\ $$

Commented bymrW1 last updated on 29/Jun/17

Commented bymrW1 last updated on 29/Jun/17

in distance (k/2) to line d_1  and to d_2  we  draw e_1  // d_1  and e_2  // d_2 .  e_1  and e_2  meet at A.  OA is the bisector of angle between d_1   and d_2 .  we draw a line at A perpendicularly  to OA which intersects d_1  and d_2  at  B and C.  BC is the locus of M whose sum of  distances to d_1  and d_2  is k.

$$\mathrm{in}\:\mathrm{distance}\:\frac{\mathrm{k}}{\mathrm{2}}\:\mathrm{to}\:\mathrm{line}\:\mathrm{d}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{to}\:\mathrm{d}_{\mathrm{2}} \:\mathrm{we} \\ $$ $$\mathrm{draw}\:\mathrm{e}_{\mathrm{1}} \://\:\mathrm{d}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{e}_{\mathrm{2}} \://\:\mathrm{d}_{\mathrm{2}} . \\ $$ $$\mathrm{e}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{e}_{\mathrm{2}} \:\mathrm{meet}\:\mathrm{at}\:\mathrm{A}. \\ $$ $$\mathrm{OA}\:\mathrm{is}\:\mathrm{the}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{d}_{\mathrm{1}} \\ $$ $$\mathrm{and}\:\mathrm{d}_{\mathrm{2}} . \\ $$ $$\mathrm{we}\:\mathrm{draw}\:\mathrm{a}\:\mathrm{line}\:\mathrm{at}\:\mathrm{A}\:\mathrm{perpendicularly} \\ $$ $$\mathrm{to}\:\mathrm{OA}\:\mathrm{which}\:\mathrm{intersects}\:\mathrm{d}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{d}_{\mathrm{2}} \:\mathrm{at} \\ $$ $$\mathrm{B}\:\mathrm{and}\:\mathrm{C}. \\ $$ $$\mathrm{BC}\:\mathrm{is}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{M}\:\mathrm{whose}\:\mathrm{sum}\:\mathrm{of} \\ $$ $$\mathrm{distances}\:\mathrm{to}\:\mathrm{d}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{d}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{k}. \\ $$

Commented bymrW1 last updated on 30/Jun/17

proof:  OB=OC  A_(ΔOBC) =2×(1/2)×OC×(k/2)=((OC)/2)×k  (1/2)OC×MP+(1/2)OB×MQ=A_(ΔOBC)   ⇒MP+MQ=(2/(OC))A_(ΔOBC) =(2/(OC))×((OC)/2)×k=k

$$\mathrm{proof}: \\ $$ $$\mathrm{OB}=\mathrm{OC} \\ $$ $$\mathrm{A}_{\Delta\mathrm{OBC}} =\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{OC}×\frac{\mathrm{k}}{\mathrm{2}}=\frac{\mathrm{OC}}{\mathrm{2}}×\mathrm{k} \\ $$ $$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{OC}×\mathrm{MP}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{OB}×\mathrm{MQ}=\mathrm{A}_{\Delta\mathrm{OBC}} \\ $$ $$\Rightarrow\mathrm{MP}+\mathrm{MQ}=\frac{\mathrm{2}}{\mathrm{OC}}\mathrm{A}_{\Delta\mathrm{OBC}} =\frac{\mathrm{2}}{\mathrm{OC}}×\frac{\mathrm{OC}}{\mathrm{2}}×\mathrm{k}=\mathrm{k} \\ $$

Commented bymrW1 last updated on 29/Jun/17

I used this knowledge for solving   Q16066.

$$\mathrm{I}\:\mathrm{used}\:\mathrm{this}\:\mathrm{knowledge}\:\mathrm{for}\:\mathrm{solving}\: \\ $$ $$\mathrm{Q16066}. \\ $$

Commented bymrW1 last updated on 29/Jun/17

Please show me the solution in your  book. I′ll try.

$$\mathrm{Please}\:\mathrm{show}\:\mathrm{me}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{in}\:\mathrm{your} \\ $$ $$\mathrm{book}.\:\mathrm{I}'\mathrm{ll}\:\mathrm{try}. \\ $$

Commented bymrW1 last updated on 30/Jun/17

that is mistake in editting with my  small smartphone.  it means certainly  [OBC] = ((OC.PM)/2) + ((OB.PQ)/2)

$$\mathrm{that}\:\mathrm{is}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{editting}\:\mathrm{with}\:\mathrm{my} \\ $$ $$\mathrm{small}\:\mathrm{smartphone}. \\ $$ $$\mathrm{it}\:\mathrm{means}\:\mathrm{certainly} \\ $$ $$\left[{OBC}\right]\:=\:\frac{{OC}.{PM}}{\mathrm{2}}\:+\:\frac{{OB}.{PQ}}{\mathrm{2}}\: \\ $$

Commented byTinkutara last updated on 30/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Commented bymrW1 last updated on 30/Jun/17

you are right. it′s an other typo.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{right}.\:\mathrm{it}'\mathrm{s}\:\mathrm{an}\:\mathrm{other}\:\mathrm{typo}. \\ $$

Answered by Tinkutara last updated on 30/Jun/17

Let O be the point of intersection  between d and d′. We consider the  points A, B, C, D, as in Figure, such  that OA = OB = OC = OD = A > 0.  Suppose M lies in the interior of the  angle AOB.  If M_A  and M_B  are the projections of  M onto OA and OB, we have  MM_A  + MM_B  = k.  Multiplying by (a/2) , we obtain  [MOA] + [MOB] = ((ka)/2) .  But  [MOA] + [MOB] = [MAOB]  = [OAB] + [MAB].  It follows that the area of MAB is  constant, and hence the locus of M in  the interior of ∠AOB is a segment XY  parallel to AB.  Considering the other three possible  locations, of M, we deduce that the  locus is a rectangle XYZT whose  diagonals are d and d′.  Observation: It is worth mentioning  that if M lies, for instance, on the line  XY but not in the interior of the  segment XY, another equality occurs.  If M is on the half-line XY as in Figure  5.15, we have  [MOA] − [MOB] = [OAB] + [MAB],  so we deduce that for those positions of  M, the difference of the distances to d  and d′ equals k.

$$\mathrm{Let}\:{O}\:\mathrm{be}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{intersection} \\ $$ $$\mathrm{between}\:{d}\:\mathrm{and}\:{d}'.\:\mathrm{We}\:\mathrm{consider}\:\mathrm{the} \\ $$ $$\mathrm{points}\:{A},\:{B},\:{C},\:{D},\:\mathrm{as}\:\mathrm{in}\:\mathrm{Figure},\:\mathrm{such} \\ $$ $$\mathrm{that}\:{OA}\:=\:{OB}\:=\:{OC}\:=\:{OD}\:=\:{A}\:>\:\mathrm{0}. \\ $$ $$\mathrm{Suppose}\:{M}\:\mathrm{lies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{the} \\ $$ $$\mathrm{angle}\:{AOB}. \\ $$ $$\mathrm{If}\:{M}_{{A}} \:\mathrm{and}\:{M}_{{B}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{projections}\:\mathrm{of} \\ $$ $${M}\:\mathrm{onto}\:{OA}\:\mathrm{and}\:{OB},\:\mathrm{we}\:\mathrm{have} \\ $$ $${MM}_{{A}} \:+\:{MM}_{{B}} \:=\:{k}. \\ $$ $$\mathrm{Multiplying}\:\mathrm{by}\:\frac{{a}}{\mathrm{2}}\:,\:\mathrm{we}\:\mathrm{obtain} \\ $$ $$\left[{MOA}\right]\:+\:\left[{MOB}\right]\:=\:\frac{{ka}}{\mathrm{2}}\:. \\ $$ $$\mathrm{But} \\ $$ $$\left[{MOA}\right]\:+\:\left[{MOB}\right]\:=\:\left[{MAOB}\right] \\ $$ $$=\:\left[{OAB}\right]\:+\:\left[{MAB}\right]. \\ $$ $$\mathrm{It}\:\mathrm{follows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:{MAB}\:\mathrm{is} \\ $$ $$\mathrm{constant},\:\mathrm{and}\:\mathrm{hence}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{M}\:\mathrm{in} \\ $$ $$\mathrm{the}\:\mathrm{interior}\:\mathrm{of}\:\angle{AOB}\:\mathrm{is}\:\mathrm{a}\:\mathrm{segment}\:{XY} \\ $$ $$\mathrm{parallel}\:\mathrm{to}\:{AB}. \\ $$ $$\mathrm{Considering}\:\mathrm{the}\:\mathrm{other}\:\mathrm{three}\:\mathrm{possible} \\ $$ $$\mathrm{locations},\:\mathrm{of}\:\mathrm{M},\:\mathrm{we}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{the} \\ $$ $$\mathrm{locus}\:\mathrm{is}\:\mathrm{a}\:\mathrm{rectangle}\:{XYZT}\:\mathrm{whose} \\ $$ $$\mathrm{diagonals}\:\mathrm{are}\:\mathrm{d}\:\mathrm{and}\:{d}'. \\ $$ $$\boldsymbol{\mathrm{Observation}}:\:\mathrm{It}\:\mathrm{is}\:\mathrm{worth}\:\mathrm{mentioning} \\ $$ $$\mathrm{that}\:\mathrm{if}\:{M}\:\mathrm{lies},\:\mathrm{for}\:\mathrm{instance},\:\mathrm{on}\:\mathrm{the}\:\mathrm{line} \\ $$ $${XY}\:\mathrm{but}\:\mathrm{not}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{the} \\ $$ $$\mathrm{segment}\:{XY},\:\mathrm{another}\:\mathrm{equality}\:\mathrm{occurs}. \\ $$ $$\mathrm{If}\:{M}\:\mathrm{is}\:\mathrm{on}\:\mathrm{the}\:\mathrm{half}-\mathrm{line}\:{XY}\:\mathrm{as}\:\mathrm{in}\:\mathrm{Figure} \\ $$ $$\mathrm{5}.\mathrm{15},\:\mathrm{we}\:\mathrm{have} \\ $$ $$\left[{MOA}\right]\:−\:\left[{MOB}\right]\:=\:\left[{OAB}\right]\:+\:\left[{MAB}\right], \\ $$ $$\mathrm{so}\:\mathrm{we}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{for}\:\mathrm{those}\:\mathrm{positions}\:\mathrm{of} \\ $$ $${M},\:\mathrm{the}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{distances}\:\mathrm{to}\:\mathrm{d} \\ $$ $$\mathrm{and}\:{d}'\:\mathrm{equals}\:{k}. \\ $$

Commented byTinkutara last updated on 30/Jun/17

Commented byTinkutara last updated on 30/Jun/17

Commented byTinkutara last updated on 30/Jun/17

Figure 5.15. Maybe something is not  printed correctly.

$$\mathrm{Figure}\:\mathrm{5}.\mathrm{15}.\:\mathrm{Maybe}\:\mathrm{something}\:\mathrm{is}\:\mathrm{not} \\ $$ $$\mathrm{printed}\:\mathrm{correctly}. \\ $$

Commented bymrW1 last updated on 30/Jun/17

The answer in book is not so well   explained. The figures don′t match  the question. But I can catch its  statement and it′s in principle the  same as my answer.  In fact this question is in core the same  as in Q16066. In Q16066 if a=b′=2b,  we get the symmetry and the locus  of M (line EF) is perdendicular to  the bisector of angle α and OE=OF.  I think my answer to this question is  again much easier and clear than the  answer in book.

$$\mathrm{The}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{book}\:\mathrm{is}\:\mathrm{not}\:\mathrm{so}\:\mathrm{well}\: \\ $$ $$\mathrm{explained}.\:\mathrm{The}\:\mathrm{figures}\:\mathrm{don}'\mathrm{t}\:\mathrm{match} \\ $$ $$\mathrm{the}\:\mathrm{question}.\:\mathrm{But}\:\mathrm{I}\:\mathrm{can}\:\mathrm{catch}\:\mathrm{its} \\ $$ $$\mathrm{statement}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{in}\:\mathrm{principle}\:\mathrm{the} \\ $$ $$\mathrm{same}\:\mathrm{as}\:\mathrm{my}\:\mathrm{answer}. \\ $$ $$\mathrm{In}\:\mathrm{fact}\:\mathrm{this}\:\mathrm{question}\:\mathrm{is}\:\mathrm{in}\:\mathrm{core}\:\mathrm{the}\:\mathrm{same} \\ $$ $$\mathrm{as}\:\mathrm{in}\:\mathrm{Q16066}.\:\mathrm{In}\:\mathrm{Q16066}\:\mathrm{if}\:\mathrm{a}=\mathrm{b}'=\mathrm{2b}, \\ $$ $$\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{symmetry}\:\mathrm{and}\:\mathrm{the}\:\mathrm{locus} \\ $$ $$\mathrm{of}\:\mathrm{M}\:\left(\mathrm{line}\:\mathrm{EF}\right)\:\mathrm{is}\:\mathrm{perdendicular}\:\mathrm{to} \\ $$ $$\mathrm{the}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{angle}\:\alpha\:\mathrm{and}\:\mathrm{OE}=\mathrm{OF}. \\ $$ $$\mathrm{I}\:\mathrm{think}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{this}\:\mathrm{question}\:\mathrm{is} \\ $$ $$\mathrm{again}\:\mathrm{much}\:\mathrm{easier}\:\mathrm{and}\:\mathrm{clear}\:\mathrm{than}\:\mathrm{the} \\ $$ $$\mathrm{answer}\:\mathrm{in}\:\mathrm{book}. \\ $$

Commented bymrW1 last updated on 30/Jun/17

I think both answers are correct. none  is better.But I think my answer trys  to explain more clearly and naturally.

$$\mathrm{I}\:\mathrm{think}\:\mathrm{both}\:\mathrm{answers}\:\mathrm{are}\:\mathrm{correct}.\:\mathrm{none} \\ $$ $$\mathrm{is}\:\mathrm{better}.\mathrm{But}\:\mathrm{I}\:\mathrm{think}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{trys} \\ $$ $$\mathrm{to}\:\mathrm{explain}\:\mathrm{more}\:\mathrm{clearly}\:\mathrm{and}\:\mathrm{naturally}. \\ $$

Commented bymrW1 last updated on 30/Jun/17

I think you can follow my answer better  than follow the answer in the book.

$$\mathrm{I}\:\mathrm{think}\:\mathrm{you}\:\mathrm{can}\:\mathrm{follow}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{better} \\ $$ $$\mathrm{than}\:\mathrm{follow}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{the}\:\mathrm{book}. \\ $$

Commented byTinkutara last updated on 30/Jun/17

Yes Sir! I do it. I posted my book′s  solution thinking it would be easier or  you will get a new method. But  actually your answers are excellent!

$$\mathrm{Yes}\:\mathrm{Sir}!\:\mathrm{I}\:\mathrm{do}\:\mathrm{it}.\:\mathrm{I}\:\mathrm{posted}\:\mathrm{my}\:\mathrm{book}'\mathrm{s} \\ $$ $$\mathrm{solution}\:\mathrm{thinking}\:\mathrm{it}\:\mathrm{would}\:\mathrm{be}\:\mathrm{easier}\:\mathrm{or} \\ $$ $$\mathrm{you}\:\mathrm{will}\:\mathrm{get}\:\mathrm{a}\:\mathrm{new}\:\mathrm{method}.\:\mathrm{But} \\ $$ $$\mathrm{actually}\:\mathrm{your}\:\mathrm{answers}\:\mathrm{are}\:\mathrm{excellent}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com