Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 160767 by cortano last updated on 06/Dec/21

    ∫_( 0) ^( (π/2))  ((cos^2 x)/(cos^2 x+4sin^2 x)) dx =?

$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=?\: \\ $$

Answered by MJS_new last updated on 06/Dec/21

∫_0 ^(π/2) ((cos^2  x)/(cos^2  x +4sin^2  x))dx=       [t=tan x → dx=(dt/(t^2 +1))]  =∫_0 ^∞ (dt/((t^2 +1)(4t^2 +1)))=(1/3)∫_0 ^∞ ((1/(t^2 +(1/4)))−(1/(t^2 +1)))dt=  =(1/3)[2arctan 2t −arctan t]_0 ^∞ =(π/6)

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}\:+\mathrm{4sin}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{4}{t}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{3}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\left(\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}\right){dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{2arctan}\:\mathrm{2}{t}\:−\mathrm{arctan}\:{t}\right]_{\mathrm{0}} ^{\infty} =\frac{\pi}{\mathrm{6}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com