Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 161656 by amin96 last updated on 20/Dec/21

∫_0 ^1 ((xln(1+x))/(1+x^2 ))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{xln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}} \\ $$

Commented by Ar Brandon last updated on 21/Dec/21

Commented by amin96 last updated on 21/Dec/21

solution???

$${solution}??? \\ $$

Commented by smallEinstein last updated on 22/Dec/21

Answered by mindispower last updated on 21/Dec/21

∫_0 ^1 (x/(1+x^2 ))ln(((1−x)/(1+x)))dx=A  y=((1−x)/(1+x))⇒x=((1−y)/(1+y))⇒dx=((−2dy)/((1+y)^2 ))  =∫_0 ^1 ((1−y)/(1+y)).((ln(y))/(1+y^2 )).dy  =∫_0 ^1 ((ln(y))/(1+y))−((yln(y))/(1+y^2 ))dy=(3/4)∫_0 ^1 ((ln(y))/(1+y))dy  =−(3/4)∫_0 ^1 ((ln(1+y))/y)dy=(3/4)(−∫_0 ^1 ((ln(1−(−y)))/((−y)))d(−y))  =(3/4)Li_2 (−1)=(3/4).−(π^2 /(12))=−(π^2 /(16))  ∫_0 ^1 ((xln(1−x^2 ))/(1+x^2 ))=(1/2)∫_0 ^1 ((ln(1−y))/(1+y))dt=B  =(1/2)∫_0 ^1 ((ln(t))/(2−t))dt  =(1/2)∫_0 ^1 ((ln((t/2))+ln(2))/(1−((t/2))))d((t/2))=(1/2)∫_0 ^(1/2) ((ln(u))/(1−u))du+((ln(2))/2)∫_0 ^(1/2) (du/(1−u))  =−(1/2)∫_0 ^(1/2) ((ln(1−(1−u)))/(1−u))d(1−u)  =(1/2)Li_2 (1−u)]_0 ^(1/2) −((ln(2))/2)ln((1/2))  =(1/2)[Li_2 ((1/2))−Li_2 (1)+ln^2 (2)]  =(1/2)[(π^2 /(12))−(π^2 /6)+((ln^2 (2))/2)]=−(π^2 /(24))+((ln^2 (2))/4)  ∫_0 ^1 (x/(1+x^2 ))ln(1+x)dx=((A+B)/2)=−((5π^2 )/(96))+((ln^2 (2))/8)  =

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{ln}\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right){dx}={A} \\ $$$${y}=\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\Rightarrow{x}=\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}\Rightarrow{dx}=\frac{−\mathrm{2}{dy}}{\left(\mathrm{1}+{y}\right)^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}.\frac{{ln}\left({y}\right)}{\mathrm{1}+{y}^{\mathrm{2}} }.{dy} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({y}\right)}{\mathrm{1}+{y}}−\frac{{yln}\left({y}\right)}{\mathrm{1}+{y}^{\mathrm{2}} }{dy}=\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({y}\right)}{\mathrm{1}+{y}}{dy} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{y}\right)}{{y}}{dy}=\frac{\mathrm{3}}{\mathrm{4}}\left(−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−\left(−{y}\right)\right)}{\left(−{y}\right)}{d}\left(−{y}\right)\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}{Li}_{\mathrm{2}} \left(−\mathrm{1}\right)=\frac{\mathrm{3}}{\mathrm{4}}.−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}=−\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{y}\right)}{\mathrm{1}+{y}}{dt}={B} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{\mathrm{2}−{t}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\frac{{t}}{\mathrm{2}}\right)+{ln}\left(\mathrm{2}\right)}{\mathrm{1}−\left(\frac{{t}}{\mathrm{2}}\right)}{d}\left(\frac{{t}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{ln}\left({u}\right)}{\mathrm{1}−{u}}{du}+\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{du}}{\mathrm{1}−{u}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}−\left(\mathrm{1}−{u}\right)\right)}{\mathrm{1}−{u}}{d}\left(\mathrm{1}−{u}\right) \\ $$$$\left.=\frac{\mathrm{1}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(\mathrm{1}−{u}\right)\right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} −\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)−{Li}_{\mathrm{2}} \left(\mathrm{1}\right)+{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}\right]=−\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{ln}\left(\mathrm{1}+{x}\right){dx}=\frac{{A}+{B}}{\mathrm{2}}=−\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{96}}+\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{8}} \\ $$$$= \\ $$$$ \\ $$

Commented by smallEinstein last updated on 21/Dec/21

pls recheck solution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com