Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 162364 by cortano last updated on 29/Dec/21

   lim_(x→0)  ((5sin x−sin 3x cos 2x−cos 3x sin 2x)/x^3 ) =?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5sin}\:{x}−\mathrm{sin}\:\mathrm{3}{x}\:\mathrm{cos}\:\mathrm{2}{x}−\mathrm{cos}\:\mathrm{3}{x}\:\mathrm{sin}\:\mathrm{2}{x}}{{x}^{\mathrm{3}} }\:=? \\ $$

Commented by blackmamba last updated on 29/Dec/21

 L=lim_(x→0)  ((5sin x−sin 5x)/x^3 )   L= lim_(x→0)  ((5sin x−sin x+sin x−sin 5x)/x^3 )    L= lim_(x→0)  ((4sin x−2cos 3x sin 2x)/x^3 )   L= lim_(x→0)  ((4sin x−4sin x cos x cos 3x)/x^3 )   L= 4 ×lim_(x→0)  ((1−cos x cos 3x)/x^2 )    L=4×lim_(x→0)  ((1−cos x+cos x−cos x cos 3x)/x^2 )   L= 4×lim_(x→0)  ((2sin^2 ((x/2))+cos x (2sin^2 (((3x)/2))))/x^2 )   L= 4×((1/2)+(9/2))= 20.

$$\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5sin}\:{x}−\mathrm{sin}\:\mathrm{5}{x}}{{x}^{\mathrm{3}} } \\ $$$$\:{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5sin}\:{x}−\mathrm{sin}\:{x}+\mathrm{sin}\:{x}−\mathrm{sin}\:\mathrm{5}{x}}{{x}^{\mathrm{3}} }\: \\ $$$$\:{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4sin}\:{x}−\mathrm{2cos}\:\mathrm{3}{x}\:\mathrm{sin}\:\mathrm{2}{x}}{{x}^{\mathrm{3}} } \\ $$$$\:{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4sin}\:{x}−\mathrm{4sin}\:{x}\:\mathrm{cos}\:{x}\:\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{3}} } \\ $$$$\:{L}=\:\mathrm{4}\:×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} }\: \\ $$$$\:{L}=\mathrm{4}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}+\mathrm{cos}\:{x}−\mathrm{cos}\:{x}\:\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} } \\ $$$$\:{L}=\:\mathrm{4}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{cos}\:{x}\:\left(\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{3}{x}}{\mathrm{2}}\right)\right)}{{x}^{\mathrm{2}} } \\ $$$$\:{L}=\:\mathrm{4}×\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{9}}{\mathrm{2}}\right)=\:\mathrm{20}. \\ $$

Answered by aleks041103 last updated on 29/Dec/21

sin3x cos2x+cos3x sin2x=sin5x  ⇒ans=lim_(x→0) ((5sinx−sin5x)/x^3 )  use l′hopital  ans=lim_(x→0) ((5cosx−5cos5x)/(3x^2 ))=(5/3)lim_(x→0) ((−sinx+5sin5x)/(2x))=  =(5/6)lim_(x→0) ((−cosx+25cos5x)/1)=((24.5)/6)=20  Ans. 20

$${sin}\mathrm{3}{x}\:{cos}\mathrm{2}{x}+{cos}\mathrm{3}{x}\:{sin}\mathrm{2}{x}={sin}\mathrm{5}{x} \\ $$$$\Rightarrow{ans}=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{5}{sinx}−{sin}\mathrm{5}{x}}{{x}^{\mathrm{3}} } \\ $$$${use}\:{l}'{hopital} \\ $$$${ans}=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{5}{cosx}−\mathrm{5}{cos}\mathrm{5}{x}}{\mathrm{3}{x}^{\mathrm{2}} }=\frac{\mathrm{5}}{\mathrm{3}}\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{−{sinx}+\mathrm{5}{sin}\mathrm{5}{x}}{\mathrm{2}{x}}= \\ $$$$=\frac{\mathrm{5}}{\mathrm{6}}\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{−{cosx}+\mathrm{25}{cos}\mathrm{5}{x}}{\mathrm{1}}=\frac{\mathrm{24}.\mathrm{5}}{\mathrm{6}}=\mathrm{20} \\ $$$${Ans}.\:\mathrm{20} \\ $$

Answered by bobhans last updated on 29/Dec/21

  lim_(x→0)  ((5sin x−sin 5x)/x^3 ) = lim_(x→0)  ((5(x−(x^3 /6))−(5x−((125x^3 )/6)))/x^3 )   = lim_(x→0)  ((((120)/6)x^3 )/x^3 ) = 20

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5sin}\:\mathrm{x}−\mathrm{sin}\:\mathrm{5x}}{\mathrm{x}^{\mathrm{3}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5}\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)−\left(\mathrm{5x}−\frac{\mathrm{125x}^{\mathrm{3}} }{\mathrm{6}}\right)}{\mathrm{x}^{\mathrm{3}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{120}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{3}} }\:=\:\mathrm{20} \\ $$

Commented by aleks041103 last updated on 29/Dec/21

I think you still need to show that the  contribution of the rest of the teylor  series is 0

$${I}\:{think}\:{you}\:{still}\:{need}\:{to}\:{show}\:{that}\:{the} \\ $$$${contribution}\:{of}\:{the}\:{rest}\:{of}\:{the}\:{teylor} \\ $$$${series}\:{is}\:\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com