Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 1624 by 112358 last updated on 27/Aug/15

Find the first derivative of  y(x)=(√(x+(√(x+(√(x+(√(x+(√(x+...))))))))))  from first principles.

$${Find}\:{the}\:{first}\:{derivative}\:{of} \\ $$$${y}\left({x}\right)=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+...}}}}} \\ $$$${from}\:{first}\:{principles}.\: \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 27/Aug/15

Let    (√(x+(√(x+(√(x+(√(x+(√(x+...))))))))))=t                 x+(√(x+(√(x+(√(x+(√(x+...))))))))=t^2                  x+t=t^2                  t^2 −t−x=0            t=((−(−1)±(√((−1)^2 −4(1)(−x))))/(2(1)))         t=((1±(√(1+4x)))/2)    y′(x)=(d/dx)(((1±(√(1+4x)))/2))       f ′(a)=lim_(x→a) ((f(x)−f(a))/(x−a))    [First principle /ab−initio Formula]                y′(a)=lim_(x→a) (((((1±(√(1+4x)))/2))−(((1±(√(1+4a)))/2)))/(x−a))                          =lim_(x→a) ((±(√(1+4x))   ∓  (√(1+4a)))/(2(x−a)))        y′(a)=lim_(x→a) (((√(1+4x)) −(√(1+4a)))/(2(x−a))) ∨ y′(a)= lim_(x→a) ((−(√(1+4x)) +(√(1+4a)))/(2(x−a)))               =lim_(x→a) ((((√(1+4x)) −(√(1+4a)))/(2(x−a)))×(((√(1+4x)) +(√(1+4a)))/((√(1+4x)) +(√(1+4a)))))                =lim_(x→a)   ((1+4x−1−4a)/(2(x−a)((√(1+4x)) +(√(1+4a)))))                 =lim_(x→a)   ((4(x−a))/(2(x−a)((√(1+4x)) +(√(1+4a)))))                 =lim_(x→a)   (4/(2((√(1+4x)) +(√(1+4a)))))                 = (2/((√(1+4a)) + (√(1+4a))))=(1/(√(1+4a)))           y′(a)=(1/(√(1+4a))) ⇒y′(x)=(1/(√(1+4x)))        y′(a)= lim_(x→a)  (((−(√(1+4x)) +(√(1+4a)))/(2(x−a))) ×((+(√(1+4x)) +(√(1+4a)))/(+(√(1+4x)) +(√(1+4a)))) )             =lim_(x→a) (((1+4a−1−4x)/(2(x−a)((√(1+4x)) +(√(1+4a))))))             =lim_(x→a) (((−4(x−a))/(2(x−a)((√(1+4x)) +(√(1+4a))))))             =lim_(x→a) (((−2)/(((√(1+4x)) +(√(1+4a))))))= ((−2)/(((√(1+4a)) +(√(1+4a)))))            y′(a) =((−1)/(√(1+4a))) ⇒y′(x)=((−1)/(√(1+4x)))              y′(x)=((±1)/(√(1+4x)))

$${Let}\:\:\:\:\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+...}}}}}={t} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+...}}}}={t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}+{t}={t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}^{\mathrm{2}} −{t}−{x}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{t}=\frac{−\left(−\mathrm{1}\right)\pm\sqrt{\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(−{x}\right)}}{\mathrm{2}\left(\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:{t}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}}\:\: \\ $$$${y}'\left({x}\right)=\frac{{d}}{{dx}}\left(\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}}\right)\: \\ $$$$\:\:\:\:{f}\:'\left({a}\right)=\underset{{x}\rightarrow{a}} {{lim}}\frac{{f}\left({x}\right)−{f}\left({a}\right)}{{x}−{a}}\:\:\:\:\left[\mathrm{First}\:\mathrm{principle}\:/\mathrm{ab}−\mathrm{initio}\:\mathrm{Formula}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}'\left({a}\right)=\underset{{x}\rightarrow{a}} {{lim}}\frac{\left(\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}}\right)−\left(\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}}\right)}{{x}−{a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow{a}} {{lim}}\frac{\pm\sqrt{\mathrm{1}+\mathrm{4}{x}}\:\:\:\mp\:\:\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}\left({x}−{a}\right)} \\ $$$$\:\:\:\:\:\:{y}'\left({a}\right)=\underset{{x}\rightarrow{a}} {{lim}}\frac{\sqrt{\mathrm{1}+\mathrm{4}{x}}\:−\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}\left({x}−{a}\right)}\:\vee\:{y}'\left({a}\right)=\:\underset{{x}\rightarrow{a}} {{lim}}\frac{−\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}\left({x}−{a}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow{a}} {{lim}}\left(\frac{\sqrt{\mathrm{1}+\mathrm{4}{x}}\:−\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}\left({x}−{a}\right)}×\frac{\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow{a}} {{lim}}\:\:\frac{\mathrm{1}+\mathrm{4}{x}−\mathrm{1}−\mathrm{4}{a}}{\mathrm{2}\left({x}−{a}\right)\left(\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow{a}} {{lim}}\:\:\frac{\mathrm{4}\left({x}−{a}\right)}{\mathrm{2}\left({x}−{a}\right)\left(\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow{a}} {{lim}}\:\:\frac{\mathrm{4}}{\mathrm{2}\left(\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{2}}{\sqrt{\mathrm{1}+\mathrm{4}{a}}\:+\:\sqrt{\mathrm{1}+\mathrm{4}{a}}}=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{a}}} \\ $$$$\:\:\:\:\:\:\:\:\:{y}'\left({a}\right)=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{a}}}\:\Rightarrow{y}'\left({x}\right)=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{x}}}\:\:\:\:\:\: \\ $$$${y}'\left({a}\right)=\:\underset{{x}\rightarrow{a}} {{lim}}\:\left(\frac{−\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}}{\mathrm{2}\left({x}−{a}\right)}\:×\frac{+\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}}{+\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow{a}} {{lim}}\left(\frac{\mathrm{1}+\mathrm{4}{a}−\mathrm{1}−\mathrm{4}{x}}{\mathrm{2}\left({x}−{a}\right)\left(\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}\right)}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow{a}} {{lim}}\left(\frac{−\mathrm{4}\left({x}−{a}\right)}{\mathrm{2}\left({x}−{a}\right)\left(\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}\right)}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow{a}} {{lim}}\left(\frac{−\mathrm{2}}{\left(\sqrt{\mathrm{1}+\mathrm{4}{x}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}\right)}\right)=\:\frac{−\mathrm{2}}{\left(\sqrt{\mathrm{1}+\mathrm{4}{a}}\:+\sqrt{\mathrm{1}+\mathrm{4}{a}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:{y}'\left({a}\right)\:=\frac{−\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{a}}}\:\Rightarrow{y}'\left({x}\right)=\frac{−\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{x}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{y}'\left({x}\right)=\frac{\pm\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{x}}}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Commented by 112358 last updated on 27/Aug/15

If −x is constant with t variable  shouldn′t it be          t=((1±(√(1+4x)))/2) ?

$${If}\:−{x}\:{is}\:{constant}\:{with}\:{t}\:{variable} \\ $$$${shouldn}'{t}\:{it}\:{be}\: \\ $$$$\:\:\:\:\:\:\:{t}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}}\:? \\ $$

Commented by Rasheed Soomro last updated on 28/Aug/15

Yes, it is a calculation mistake! And I am going to correct it.  Thanks for mentioning.

$$\mathrm{Y}{es},\:{it}\:{is}\:{a}\:{calculation}\:{mistake}!\:{And}\:{I}\:{am}\:{going}\:{to}\:{correct}\:{it}. \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{mentioning}. \\ $$

Commented by Yozzian last updated on 27/Aug/15

Looks correct sir! My approach  took the form       (dy/dx)=lim_(h→0) ((f(x+h)−f(x))/h)

$${Looks}\:{correct}\:{sir}!\:{My}\:{approach} \\ $$$${took}\:{the}\:{form} \\ $$$$\:\:\:\:\:\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$

Commented by Rasheed Soomro last updated on 28/Aug/15

Thanks!

$${Thanks}! \\ $$

Answered by Yozzian last updated on 27/Aug/15

The answer is in the comments  following the question.

$${The}\:{answer}\:{is}\:{in}\:{the}\:{comments} \\ $$$${following}\:{the}\:{question}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com